期刊文献+

基于学习的图像智能适配显示技术 被引量:1

Learning based intelligent image retargeting technique
下载PDF
导出
摘要 为适应不同的显示分辨率,出现了各式各样的图像适配显示(IR)的方法.提出了基于图像列的一种快速适配显示方法.在处理过程中,首先,计算一个原始图像的重要性图;其次,根据图像每列的重要性程度为其分配一个比例因子,对不同图像而言,应对比例因子设置不同的上限才可以得到较好的结果;最后,提出通过机器学习方法计算出不同图像的上限,从而可以高效率地得到理想的结果.根据每一列的比例因子采用像素融合的方式处理图片得到目标分辨率.本方法是基于列实现的,其复杂度低、便于计算;设置每列系数的上限控制了图像重要部分的宽度,从而减少了不连贯,处理结果更为自然. There has been a wide range of image retargeting( IR) approaches,in order to solve the problem of adapting images to different display resolutions. A fast image retargeting method was proposed,which was based on image columns. Firstly,the method would calculate a saliency map of the original image. Secondly,a group of scaling factors were generated for image pixel fusion,which was used to get the result image of the target image size. Each image column corresponded to its scaling factor. For different images,an adaptive upper bound was obtained by machine learning,for scaling factor assignment. This upper bound was set to limit the column width and can reduce image distortion. The experiment results prove that this adaptive upper bound results in a better performance. Moreover,this method has a low complexity,thus it calculates fast,as it is based on image columns instead of pixels.
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2015年第6期1147-1154,共8页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(61370158)
关键词 图像适配显示 图像缩放 机器学习 线裁剪法 低复杂度 image retargeting(IR) image resizing machine learning seam carving low complexity
  • 相关文献

参考文献19

  • 1Harel J, Koch C, Perona P, et al.Graph-based visual saliency[C]//Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems.Vancouver, B.C.:NIPS, 2006:545-552. 被引量:1
  • 2Shamir A, Sorkine O.Visual media retargeting[C]//ACM SIGGRAPH ASIA 2009 Courses.New York:ACM, 2009. 被引量:1
  • 3Avidan S, Shamir A.Seam carving for content-aware image resizing[J].ACM Transactions on Graphics, 2007, 26(3):10. 被引量:1
  • 4Wolf L, Guttmann M, Cohen-Or D.Nonhomogeneous content-driven video-retargeting[C]//IEEE 11th International Conference on Computer Vision, ICCV 2007.Piscataway, NJ:IEEE Press, 2007, 10:14-21. 被引量:1
  • 5Dong W, Zhou N, Paul J C, et al.Optimized image resizing using seam carving and scaling[J].ACM Transactions on Graphics(TOG), 2009, 28(5):1-10. 被引量:1
  • 6Hwang D S, Chien S Y.Content-aware image resizing using perceptual seam carving with human attention model[C]//IEEE International Conference on Multimedia and Expo.Piscataway, NJ:IEEE Press, 2008:1029-1032. 被引量:1
  • 7Conge D D, Kumar M, Miller R L, et al.Improved seam carving for image resizing[C]//Proceedings of 2010 IEEE Workshop on Signal Processing Systems(SIPS).Piscataway, NJ:IEEE Press, 2010:345-349. 被引量:1
  • 8Domingues D, Alahi A, Vandergheynst P.Stream carving:An adaptive seam carving algorithm[C]//Proceedings of 2010 IEEE 17th International Conference on Image Processing(ICIP'2010).Piscataway, NJ:IEEE Press, 2010:901-904. 被引量:1
  • 9Conger D D, Kumar M, Radha H.Generalized multiscale seam carving[C]//Proceedings of 2010 IEEE International Workshop on Multimedia Signal Processing(MMSP).Piscataway, NJ:IEEE Press, 2010:367-372. 被引量:1
  • 10Han J W, Choi K S, Wang T S, et al.Improved seam carving using a modified energy function based on wavelet decomposition[C]//Proceedings of 2009 IEEE 13th International Symposium on Consumer Electronics(ISCE'09).Piscataway, NJ:IEEE Press, 2009:38-41. 被引量:1

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部