期刊文献+

粒子群算法惯性算子凹凸性分析 被引量:1

The Analysis of the Convexity of Inertia Weight Operator
下载PDF
导出
摘要 粒子群算法的惯性因子是算法中的一个重要的参数,目前的研究结果表明,惯性因子为减函数时算法的运行效果更为良好。文中提供了四种减函数作为惯性因子可以使用的算子,它们的凹凸性各有不同。对四个算例的数值仿真结果表明,表现最好的是惯性因子先上凸后下凸的PSO,惯性因子为下凸函数的PSO综合表现优于惯性因子为上凸函数的情况。 Aimed to the efficiency changes of PSO caused by different inertia weight operators, some research and analysis had been done in this paper. The study showed that the inertia weight should decrease progressively if you want to expand the search region and assure the convergence of PSO. Four operators of inertia weight were proposed in this paper,their convexity were different with each other.The research about four examples showed that if the inertia weight operator was concave at first and then went to convex, the performance of corresponding PSO was best in all four circumstances, and the convex strategy performed better than concave strategy.
作者 朱雅敏
出处 《价值工程》 2015年第20期198-200,共3页 Value Engineering
关键词 粒子群算法 惯性因子 凹凸性 收敛 Particle Swarm Optimization inertia weight convexity convergence
  • 相关文献

参考文献11

  • 1Kennedy J,Eberhart R,Shi Y.Swarm Intelligence[M].San Francisco,USA:Morgan Kaufmann Publishers,2001. 被引量:1
  • 2J.Kennedy and R.Eberhart.Particle swarm optimization.In Proceedings of IEEE International Conference on Neural Networks,volume IV,Perth,Australia,1995:1942-1948. 被引量:1
  • 3Van Den Bergh F.An analysis of particle swarm optimizers[D].Pretoria:Department of Computer Science,University of Pretoria,2001. 被引量:1
  • 4I.C.Trelea.The Particle swarm optimization algorithm:convergence analysis and parameter selection[J].Information Processing Letters,2003,85(6):317-325. 被引量:1
  • 5GENG H T,HUANGY H,GAO J,et al.A self-guided Particle swarm optimization with independent dynamic inertia weights setting on each particle[J].Applied Mathematics and Information Sciences.2013,7(3):545-552. 被引量:1
  • 6Wang Shaowei,Lo David,Jiang Lingxiao.Active code search:Incorporating user feedback to improve code search relevance[C]//Proceedings of the 29th IEEE/ACM International Conference on Automated Software Engineering(ASE14).2014. 被引量:1
  • 7Shi Y,Eberhart R.Particle Swarm Optimization with Fuzzy Adaptive Inertia Weight[C]//Proc.of Workshop on Particle Swarm Optimization.Indianapolis,Indiana,USA:Purdue School of Engineering and Technology,2001. 被引量:1
  • 8Shi Y,Eberhart R C.A modified Partical Swarm Optimizer[C].In:IEEE World Congress On computational Intelligence,1998:69-73. 被引量:1
  • 9周敏,李太勇.粒子群优化算法中的惯性权值非线性调整策略[J].计算机工程,2011,37(5):204-206. 被引量:24
  • 10陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309

二级参考文献27

共引文献337

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部