期刊文献+

农贸市场环境下语音信号增强方法比较 被引量:3

Comparison of speech signal enhancement methods in agricultural market environment
下载PDF
导出
摘要 语音增强是语音识别经常采用的前端处理方法。针对农贸市场环境中的语音信号,为获取更佳的识别效果,采用两种不同的评价方法,对谱减法(SS)、多带谱减(MB)、最小均方误差(MMSE)和对数最小均方误差(log MMSE)4种语音增强效果进行比较。结果表明,采用分段信噪为评价标准比对语音质量进行评价,以SS为最佳,其次为MMSE和log MMSE,多带算法较差;针对分段信噪比评价没有考虑语音可懂度的问题,对上述算法采用语音质量感知评价PESQ标准进行评分,以MB算法得分最高;提高信噪比与增加懂度往往不能同时获得,针对语音识别的复杂性,增强算法的选择要根据具体的应用进行取舍。本研究对农贸市场环境下语音信号的增强算法选用提供了参考。 Speech recognition is applyed to the interaction inferface of the mobile device of agricultural price acquistion so as to make up for the lack of voice inferface in traditional devices.But the environmental noise often decreases the recognition rate sharply,speech enhancement is often used in the front-end of speech recognition,beacause speech enhancement can improve the signal-to-noise ratio(SNR)of the input sigal.In this paper,we mainly studied the speech signal in agricultural market environment.In order to obtain a better speech recognition performance,the effects of four kinds of speech enhancement methods,including spectral subtraction(SS),multi-band spectral subtraction(MB),minimum mean square error(MMSE)and logarithmic minimum mean square error(log MMSE)were compared by using two different speech quality evaluation methods.The results showed that,by using SNR as evaluation standard,SS was the best,followed by MMSE and log MMSE,MB algorithm was poorer.Since segment SNR algorithm did not consider the problem of speech intelligibility,we used the perceptural evaluation of speech quarlity(PESQ)algorithm to mark above the four kinds methods,and the MB alogrithm got the highest score,followed by log MMSE,SS,and MMSE was poorer.So,the result was not consistent with the result of segment SNR method.The study also found that the improvement of SNR and the intelligibility increasing usually could not get at the same time.Considering the complexity of speech recognition,we should choose the enhancement alogrithm according to the specific application.The study provided references for choosing speech enhancement alogrithm in agricultural market environment.
出处 《广东农业科学》 CAS 2015年第10期166-172,共7页 Guangdong Agricultural Sciences
基金 国家自然科学基金(61271364)
关键词 语音增强 分段信噪比 PESQ 农产品价格 语音识别 speech enhancement segment signal-to-noise ratio PESQ agricultural price speech recognition
  • 相关文献

参考文献32

  • 1汪懋华.“精细农业”发展与工程技术创新[J].农业工程学报,1999,15(1):1-8. 被引量:359
  • 2赵春江,申长军,邢振,等.农产品信息采集器及采集方法[P].中国专利:2013CN102122430A,2011-07-13. 被引量:1
  • 3邢振,郑文刚,申长军,等.农产品信息采集器[P].中国专利:2011CN202035021U,2011-11-09. 被引量:1
  • 4Singh G. Multi utility E-controlled cum voice operated farm [ J]. International Journal of Computer Applications, 2010, 1 (13) : 109-113. 被引量:1
  • 5Dux D L. A speech recognition system for data collection in precision agriculture [D]. Ann Arbor: Purdue University, 2001. 被引量:1
  • 6王树才,任奕林,陈红,熊利荣,文友先.利用敲击声音信号进行禽蛋破损检测和模糊识别[J].农业工程学报,2004,20(4):130-133. 被引量:48
  • 7张翠丽,张申生,李磊.基于统一受理的农业呼叫中心解决方案[J].计算机应用与软件,2006,23(10):31-32. 被引量:9
  • 8Wenhao O, Wanlin G, Zhen L, et al. Application of keywords speech recognition in agricultural voice information system [C].//2010 Second International Conference. Wuhan: Computational Intelligence and Natural Computing Proceedings (CINC), 2010: 97-101. 被引量:1
  • 9Mporas I, Canchev T, Kostoulas T, el al. Automalic speech recognition system for home appliances control [A]. PCI '09. 13th Panhellenic Conference [C]. Informatics, 2009:114-117. 被引量:1
  • 10Milone D H, Galli G R, Cangiano C A, et al. Automatic recognition of ingestive sounds of cattle based on hidden Markov models [J]. Computers and Electronics in Agriculture, 2012, 87: 51-55. 被引量:1

二级参考文献340

共引文献517

同被引文献21

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部