期刊文献+

基于皮肤电导的非线性情感特征提取研究 被引量:3

On GSR Signal-Based Extraction of Affective Nonlinear Features
下载PDF
导出
摘要 皮肤电信号作为一种重要生理信号,已证明其中包含可靠情感信息.在实验室诱发情感生理信号过程中,采用2遍情感视频播放机制,在第二遍观看视频过程中获取了记录被试主观情绪体验的"情感重评按键文件",据此可截取可靠的情感皮肤电信号.采用多种非线性分析方法,计算相应的非线性特征,如最大Lyapunov指数、关联维、近似熵、递归定量分析和多重去趋势波动分析等.基于所提取特征,采用多种分类器KNN,Fisher判别,SVM进行情感识别性能的比较研究,结果显示SVM具有更好的分类精度.之后,采用SVM分类器比较传统的统计特征与非线性特征在识别目标情感性能上的差异,结果表明非线性特征能获得更好的识别精度.研究结果显示,基于非线性特征构建情感识别模型是可行的. Galvanic Skin Response (GSR) is a most important physiological signal, which has been proven to contain reliable affective information. When inducing the three kinds of objective emotions (happiness, sadness and fear) by affective movies fragments, the SC signals are collected by Biopac MP 150 synchro- nously. In an independent experiment the affective videos are played twice, and in the second presentation the file of subjects' affective experience is obtained, which can help to intercept the reliable affective GSR signal. After preprocessing the original GSR signal, several kinds of nonlinear algorithms, including the largest Lyapunov exponent, correlation dimension, approximate entropy, recursion quantitative analysis and multiple detrended fluctuation analysis, are used to extract the affective features. Based on these non- linear features, three kinds of classifier, i. e. Fisher discriminant analysis, KNN, and SVM, are used to compare the accuracy of classification. The result indicates that SVM has the highest classification accura- cy. Then we compare the classification accuracy between traditional statistical features and nonlinear fea- tures by SVM, and the result shows that the nonlinear features have better accuracy. All experiments prove that the affective model based on nonlinear features is feasible.
作者 程静 刘光远
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第6期186-194,共9页 Journal of Southwest University(Natural Science Edition)
基金 教育部科学技术研究重大项目资助(311032) 中央高校创新团队项目(XDJK2013A020)
关键词 情感皮肤电信号 情感诱发实验 非线性特征提取 SVM affective GSR affective induced experimental scheme the nonlinear features SVM
  • 相关文献

参考文献37

  • 1PICARD R W, VYZAS E, HEALEY J. Toward Machine Emotional Intelligence: Analysis of Affective Physiological State [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (10): 1175-1191. 被引量:1
  • 2ALZOUBI O, D'MELLO S K, CALVO R A. Detecting Naturalistic Expressions of Nonbasic Affect Using Physiological Signals [J]. IEEE Transactions on Affecitive Computing, 2010, 1(2): 298-310. 被引量:1
  • 3PETRANTONAKIS P C, HADJILEONTIADIS L J. Emotion Recognition from Brain Signals Using Hybrid Adaptive Filtering and Higher Order Crossings Analysis [J]. IEEE Transactions on Affective Computing, 2010, 1(2): 81-97. 被引量:1
  • 4KIM K H, BANG S W, KIM S R. Emotion Recognition System Using Short-Term Monitoring of Physiological Signals [J]. Medical and Biological Engineering and Computing, 2004, 42(3): 419-427. 被引量:1
  • 5WAGNER J, KIM J, ANDRD E. From Physiological Signals to Emotions : Implementing and Comparing Selected Methods for Feature Extraction and Classification [C]. Amsterdam: IEEE International Conference Multimedia and Expo, 2005. 被引量:1
  • 6CALVO R A, D'MELLO S. Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications [J]. IEEE Transactions on Affective Computing, 2010, 1(1): 18-37. 被引量:1
  • 7SANO A, HERNANDEZ J, DEPREY J, et al. Multimodal Annotation Tool for Challenging Behaviors in People with Autism Spectrum Disorders [C]. New York: The 2012 ACM Conference on Ubiquitous Computing, 2012. 被引量:1
  • 8WIGGS L, STORES G. Sleep Patterns and Sleep Disorders in Children with Autistic Spectrum Disorders: Insights U- sing Parent Report and Cctigraphy [J]. Developmental Medicine : Child Neurology, 2004, 46(6): 372-380. 被引量:1
  • 9HOT P, NAVETEUR J, LECONTE P, SEQUEIRA H. Diurnal Vriations of Tonic Electrodermal Activity [J]. Inter- national Journal of Psychophysiology, 1999, 33(3): 223-230. 被引量:1
  • 10BOUSCEIN W. Eleetrodermal Activity [M]. New York: Plenum Press, 1992. 被引量:1

二级参考文献21

  • 1胡学钢,郭亚光.一种基于粗糙集的朴素贝叶斯分类算法[J].合肥工业大学学报(自然科学版),2006,29(2):169-172. 被引量:11
  • 2张冬玲.基于粗糙集理论的属性约简算法的实现[J].计算机应用,2006,26(B06):78-79. 被引量:11
  • 3Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times and embedding windows [J]. Physica D (S0167-2789), 1999, 127: 48-60. 被引量:1
  • 4Takens F. Determing strange attractors in turbulence [J]. Lecture notes in Math (S0075-8434), 1981, 898: 361-381. 被引量:1
  • 5Kantz H, Schreiber T. Nonlinear Time Series Analysis [M]. Cambridge: Cambridge University Press, 1997, 127. 被引量:1
  • 6Fraser A M, Swinney H L. Independent coordinates for strange attractors form time series [J]. Phys. Rev. A. (S1094-1622), 1986, 33:1134-1140. 被引量:1
  • 7Grassberger P, Procaccia I. Measuring the strangeness of strange attractors [J]. Physica D (S0167-2789), 1983, 9: 189-208. 被引量:1
  • 8Kennel M B, Brown R, Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction [J]. Phys. Rev. A (S1094-1622), 1992, 45: 3403. 被引量:1
  • 9Kugiurmtzis D. State space reconstruction parameters in the analysis of chaotic times series-the role of the time window length [J]. Physica D (S0167-2789), 1996, 95: 13-28. 被引量:1
  • 10Pincus SM.Assessing serial irregularity and its implications for health.Ann.N.Y.Acad Sci,2001; 954:245 被引量:1

共引文献165

同被引文献24

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部