摘要
讨论了给定场景下机器人避障过程中最短路径优化问题的求解。主要研究了在一个区域中存在12个不同形状的障碍物,由出发点绕过障碍物经过若干固定点到达目标点的情形。通过切点坐标及直线与弧线长度的确定,按照拉绳子绕m过圆弧形障碍物得到的可能最短路径,建立机器人绕过多个避障点的最短路径模型为:minL=∑mi=1Li+∑ni=1Li最短时间路径模型为:Mint=∑mi=1(sli)+∑ni=1l1i.V0/1+e10-e2i=1i=11+e10-e2。然后比较其大小,得到最优解。
This article discusses a given scene robot obstacle avoidance during the shortest path to solve optimization problems.Studied the presence of 12 different shapes of obstacles in an area, from the starting point to bypass the obstacle situation after a fixed number of points to reach the target point. By cutting point coordinates and line and arc length is determined, in accordance with the rope may be the shortest path to bypass obstructions resulting arc to establish the shortest path to bypass more than one model of the robot obstacle avoidance point is:minL=∑mi=1Li+∑ni=1Li shortest time path model: Mint=∑mi=1(sli)+∑ni=1l1i.V0/1+e10-e2i=1i=11+e10-e2. Then compare its size to obtain the optimal solution.
出处
《自动化与仪器仪表》
2014年第12期166-170,共5页
Automation & Instrumentation
关键词
障碍物
避障点
最短路径
Obstructions
Avoidance points
Shortest path