期刊文献+

基于全局排序的高维多目标优化研究 被引量:14

Research of Global Ranking Based Many-Objective Optimization
下载PDF
导出
摘要 目标数超过4的高维多目标优化是目前进化多目标优化领域求解难度最大的问题之一,现有的多目标进化算法求解该类问题时,存在收敛性和解集分布性上的缺陷,难以满足实际工程优化需求.提出一种基于全局排序的高维多目标进化算法GR-MODE,首先,采用一种新的全局排序策略增强选择压力,无需用户偏好及目标主次信息,且避免宽松Pareto支配在排序结果合理性与可信性上的损失;其次,采用Harmonic平均拥挤距离对个体进行全局密度估计,提高现有局部密度估计方法的精确性;最后,针对高维多目标复杂空间搜索需求,设计新的精英选择策略及适应度值评价函数.将该算法与国内外现有的5种高性能多目标进化算法在标准测试函数集DTLZ{1,2,4,5}上进行对比实验,结果表明,该算法具有明显的性能优势,大幅提升了4~30维高维多目标优化的收敛性和分布性. Many-Objective optimization problem (MOP) with more than four objectives are among the most difficult problems in the field of evolutionary multi-objective optimization. In fact, existing multi-objective evolutionary algorithms (MOEAs) can not fulfill the engineering requirement of convergence, diversity and stability. In this paper, a new kind of many-objective evolutionary algorithm is proposed. The algorithm adopts a global ranking technique to favor convergence by improving selection pressure without need of the user's preference or objective information, avoiding loss of rationality and credibility due to the use of relaxed Pareto domination relations. In addition, a new global density estimation method based on the harmonic average distance is presented. Finally, a new elitist selection strategy is designed. Simulation results on DTLZ { 1,2,4,5 } test problems with 4-30 objectives show that the proposed algorithm consistently provides good convergence as the number of objectives increases, outperforming five state-of-the-art MOEAs.
出处 《软件学报》 EI CSCD 北大核心 2015年第7期1574-1583,共10页 Journal of Software
基金 国家自然科学基金(61175126) 教育部博士学科点基金(20112304110009) 辽宁省教育厅科学研究一般项目(L2012458) 辽宁省博士科研启动基金(2012010339-401) 黑龙江省博士后基金(LBH-Z12073)
关键词 高维多目标优化 宽松Pareto支配 全局排序 many-objective optimization relaxed Pareto dominate global ranking
  • 相关文献

参考文献6

二级参考文献121

  • 1赵曙光,焦李成,王宇平,杨万海.基于均匀设计的多目标自适应遗传算法及应用[J].电子学报,2004,32(10):1723-1725. 被引量:10
  • 2曾三友,魏巍,康立山,姚书振.基于正交设计的多目标演化算法[J].计算机学报,2005,28(7):1153-1162. 被引量:36
  • 3郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 4Fonseca C M, Fleming P J. Genetic algorithm for multiobjective optimization: Formulation, discussion and generalization [C]. Proc of 5th ICGA. San Mateo: Morgan Kaufmann Publishers, 1993 : 416-423. 被引量:1
  • 5Deb K, Amrit P, Sameer A, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ [J] IEEE Trans on Evolutionary Computation, 2002, 6(2): 182- 197. 被引量:1
  • 6Zitzler E, Thiele L. Multi-objective evolutionary algorithms: a comparative case study and the strength pareto approach [J]. IEEE Trans on Evolutionary Computation, 1999, 3(4): 257-271. 被引量:1
  • 7Knowles J D, Corne D W. Approximating the nondominated front using the Pareto archived evolution strategy[J]. Evolutionary Computation, 2000, 8 (2) 149-172. 被引量:1
  • 8Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design[ J ]. Structural and Multidiseiplinary Optimization, 1992, 4(2): 99-107. 被引量:1
  • 9Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[C]. Proc of 1st Int Conf on Genetic Algorithms and Their Application. Hillsdale: L. Erlbaum Associates Inc, 1985: 93-100. 被引量:1
  • 10Deb K. Multi-objective optimization using evolutionary algorithms[M]. Chichester: John Wiley and Sons Inc, 2001. 被引量:1

共引文献468

同被引文献82

引证文献14

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部