期刊文献+

一类哑铃图的奇优美性和奇强协调性 被引量:3

Odd gracefulness and odd strongly harmoniousness of a kind of dumbbell-shape graphs
下载PDF
导出
摘要 研究了哑铃图Cn+Cm+{unv1}的奇优美性和奇强协调性,得到了哑铃图Cn+Cm+{unv1}在n=4k,m=4t以及n=4k+2,m=4t+2时是奇优美图,在n=4k,m=4t时是奇强协调图等结论。 Odd Gracefulness and Odd Strongly Harmoniousness of dumbbell-shape graphs Cn+Cm+{unv1} have been studied. We have obtained that dumbbell-shape graphs Cn+Cm+{unv1} are Odd Graceful graph when n = 4k, m = 4t and n = 4k + 2, m = 4t + 2 , and that dumbbell-shape graphs Cn+Cm+{unv1} are Odd Strongly Harmonious graph when n = 4k,m = 4t.
作者 童细心
出处 《贵州师范大学学报(自然科学版)》 CAS 2015年第3期54-58,共5页 Journal of Guizhou Normal University:Natural Sciences
基金 汕头职业技术学院2014年院级科研课题(SZK2014Y24)
关键词 哑铃图 奇优美标号 奇优美图 奇强协调标号 奇强协调图 dumbbell-shape graph odd graceful labeling odd graceful graph. odd strongly harmo- nious labeling odd strongly harmonious graph
  • 相关文献

参考文献11

二级参考文献29

  • 1林育青.C_n与1C_n的优美标号[J].安徽大学学报(自然科学版),2007,31(2):13-16. 被引量:17
  • 2T. Gracl. On sequential labelings of graphs [J]. Journal of Graph Theory, 1983,7:195-210. 被引量:1
  • 3Bondy J. Murty USR. Graph Theory with Application[M]. North-Holland, 1976. 被引量:1
  • 4 Golomb S W. How to Number a Graph. Graph Theory and Computing.New York: Academic Press, 1972. 23~27. 被引量:1
  • 5 Bondy J. Murty USR. Graph Theory with Application. North. Holland, 1976.2000-04-03 被引量:1
  • 6Ringel G. Problem 25 in Theory of Graphs and Its Application[ J ]. Proc Symposium Smolenice, 1963:162. 被引量:1
  • 7Frank Hsu D. Harmonious Labeling of Windmill Graphs and Related Graphs[ J]. Journal of Graph Theory, 1982,6( 1 ) :85-87. 被引量:1
  • 8Rosa A. On Certain Valuations of the Vertices of a Graph [ J ]. Theory of Graphs, Proc Internat Sympos Rome, 1967. 被引量:1
  • 9Golomh S W. How to Number a Graph[ J]. Graph Theory and Computing, 1972:23-37. 被引量:1
  • 10T Grad. On Sequential Labelings of Graphs[ J I. Journal of Graph Theory, 1983,7:195-210. 被引量:1

共引文献46

同被引文献17

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部