摘要
A method based on the maximum a posteriori probability (MAP) criterion is proposed to estimate the channel frequency response (CFR) matrix and interference- plus-noise spatial covariance matrix (SCM) for multiple input and multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems. An iterative solution is proposed to solve the MAP-based problem and an interference rejection combining (IRC) receiver is derived to suppress co-channel interference (CCI) based on the estimated CFR and SCM. Furthermore, considering the property of SCM, i. e., Hermitian and semi-definite, two schemes are proposed to improve the accuracy of SCM estimation. The first scheme is proposed to parameterize the SCM via a sum of a series of matrices in the time domain. The second scheme measures the SCM on each subcarrier as a low-rank model while the model order can be chosen through the penalized-likelihood approach. Simulation results are provided to demonstrate the effectiveness of the proposed method.
针对MIMO-OFDM系统,提出了一种最大后验概率的信道矩阵和干扰协方差矩阵估计方法,并设计了迭代求解算法.利用所估计的信道矩阵和干扰协方差矩阵,采用IRC接收机完成同信道干扰的抑制.利用干扰协方差阵的共轭对称与半正定等特性,提出2种干扰协方差矩阵的处理方案以提高其估计精度.第1种方案将每个子载波上干扰协方差矩阵表征为一系列时域矩阵之和,第2种方案将每个子载波上的干扰协方差矩阵用低阶模型来建模,其中模型阶数通过最小描述长度算法估计.仿真结果表明了所提方案的有效性.
基金
The National Natural Science Foundation of China(No.61320106003,61222102)
the National High Technology Research and Development Program of China(863 Program)(No.2012AA01A506)