期刊文献+

无钴镍基正极材料LiNi_(0.7)Mn_(0.3)O_2制备及性能研究 被引量:4

Synthesis and electrochemical performance of cobalt free nickel rich LiNi_(0.7)Mn_(0.3)O_2 cathode material for lithium-ion batteries
下载PDF
导出
摘要 采用共沉淀-高温固相法合成正极材料LiNi0.7 Mn0.3 O 2,利用 X 射线衍射分析(XRD)表征其结构、扫描电子显微镜(SEM)表征其形貌、X 射线光电子能谱(XPS)表征其价态,最终确定了该材料最佳烧成温度为820℃.研究表明,该温度下合成的 LiNi0.7 Mn0.3 O 2具有典型的α-NaFeO 2型层状结构,颗粒形貌呈类球形且分布均匀;XPS 数据表明,LiNi0.7 Mn0.3 O 2中的 Ni 主要以+3价形态存在,Mn 主要以+4价形态存在.室温条件下以0.2 C 倍率在2.75~4.35 V 的电压范围内充放电,首次放电比容量高达188.9 mAh/g,70次循环后容量保持率为95.2%. Layered cobalt free nickel rich LiNi0.7 Mn0.3 O 2 cathode material was synthesized via co-precipitation and high temperature sintering in this study.The optimum synthesis condition for LiNi0.7 Mn0.3 O 2 cathode material was investigated in detail.The crystal structure,morphology,valence state of elements and electrochemical performance for LiNi0.7 Mn0.3 O 2 cathode material were characterized and tested by means of powder X-ray dif-fraction (XRD),scanning electron microscopy (SEM),X-ray photoelectron spectroscopy (XPS)and galvanos-tatic charge/discharge test separately.The optimum sintering temperature for LiNi0.7 Mn0.3 O 2 cathode material was 820 ℃.The sample synthesized at optimum sintering temperature has a typical α-NaFeO 2 layered structure and homogeneous spherical morphology.XPS results suggest that Ni3 + and Mn4+ exist mainly in this sample. The initial discharge specific capacity of the material was 188.1 mAh/g at 0.2 C in the voltage range of 2.75-4.35 V,and even after 70 cycles,it still maintains 95.2% of the initial discharge specific capacity.
出处 《功能材料》 EI CAS CSCD 北大核心 2015年第B06期136-140,共5页 Journal of Functional Materials
基金 国家自然科学基金资助项目(51372104) 江西省科技计划资助项目(20141BBE50019) 江西省教育厅资助项目(GJJ14411)
关键词 锂离子电池 LiNi0.7 Mn0.3O2 烧结温度 无钴 XPS lithium ion battery XPS sintering temperature cobalt free
  • 相关文献

参考文献3

二级参考文献32

  • 1[1]Scrosati B. [J]. ElectrochemActa, 2000, 45:2 461. 被引量:1
  • 2[2]Yamada S, Fujiwara F, Kanda M.J [J]. Power Sources, 1995, 54: 373. 被引量:1
  • 3[3]Arora P, White R E. [J]. J Electrochem Soc, 1998, 145:3 647. 被引量:1
  • 4[4]Del mas C. [J]. Solid State Tonics, 1992, 53-56: 370. 被引量:1
  • 5Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc, 2006, 128:8694-8698. 被引量:1
  • 6Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414, 15:359-367. 被引量:1
  • 7Kim M H, Shin H S, Shin D, et al. Synthesis and electrochemical properties of Li[Ni0.8Co0.1Mn0.1]O2 and Li[Ni0.8Co0.2]O2 via coprecipitation. J Power Sources, 2006, 159:1328-1333. 被引量:1
  • 8Quine T E, Duncan M J, Armstrong A R, et al. Layered LixMn1-yNiyO2 intercalation electrodes. J Mater Chem, 2000, 10:2838-2841. 被引量:1
  • 9Sun Y K, Myung S T, Kim M H, et al. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. J Am Chem Soc, 2005, 127:13411-13418. 被引量:1
  • 10Reddy M V, Rao G V S, Chowdari B V R. Synthesis and electrochemical studies of the 4V cathode, Li(Ni2/3Mn1/3)O2. J Power Sources, 2006, 160:1369-1374. 被引量:1

共引文献10

同被引文献47

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部