期刊文献+

二维对称结构纳秒脉冲介质阻挡放电数值模拟 被引量:10

Modeling of the Two-dimensional Nanosecond SDBD Discharge with Symmetry Electrodes
下载PDF
导出
摘要 为具体分析放电过程中电场强度、电子密度、平均电子能量及鞘层的变化规律,通过简化化学反应动力学模型以及采用全时域漂移-扩散模型方程,对N2-O2混合气体的二维平行电极纳秒脉冲介质阻挡等离子体放电的发展演化过程进行数值模拟。计算结果发现:放电从电极处开始发展形成约化场强约为5×10-19 V?m2的强电场,高电压电极附近形成0.2 mm的鞘层区域,鞘层边缘存在数密度为1.6×1019 m-3的薄电子层,且其边缘分层结构与低气压辉光放电鞘层分层结构一致;电子沉积在介质表面,等离子体从强电场中获得的能量使得其在脉冲结束后的余辉过程中继续维持,进而有效地将能量耦合给等离子体。数值模拟结果表明,提出的简化化学反应动力学模型能够有效地模拟复杂的介质阻挡纳秒脉冲放电的物理过程及其各个物理参数的变化规律。 To study the variation of electrical field intensity, electron density, mean electron energy and sheath of surface dielectric barrier discharge (SDBD), with the reduced chemical kinetics model and the full time-domain drift-diffusion mode, we conducted 2-D simulation of the SDBD plasma formation between parallel electrodes in N2-O2 mixture air at low-pressure under nanosecond impulses. It turns out that during the discharge, there is a strong electric field of about 5×10^-19 V·m^2 from the electrodes, as well as a sheath about 0.2-mm thick near the anode. The edge of the sheath has a thin shell composed of electrons of about 1.6×10^19 m^-3 in number density; its structure of layers is as same as that of the sheath of low-pressure glow discharge. Meanwhile electrons deposit on the surfaces of dielectric barriers and form a strong electric field that provide enough energy to the plasma to sustain it then in the afterglow at the end of pulse, which effectively couples energy to the plasma. The simulation results shows that the simplified chemical kinetics model is ef- fective in simulating the complex physical process of nanosecond-pulse electrical discharges including the variations of multiple physical parameters.
出处 《高电压技术》 EI CAS CSCD 北大核心 2015年第6期2100-2107,共8页 High Voltage Engineering
基金 国家自然科学基金(11472221)~~
关键词 纳秒脉冲 表面介质阻挡放电 平行电极 鞘层 电子密度 平均电子能量 nanosecond pulse surface dielectric barrier discharge parallel electrodes sheath electron density meanelectron energy
  • 相关文献

参考文献22

  • 1Lieberman M A, Lichtenberg A J. Principles of plasma discharges and materials processing[M]. New York, USA: Wiley, 1994. 被引量:1
  • 2Vasilyak L M, Kostyuchenko S V, Kudryavtsev N, et al. Fast ioniza- tion waves under electrical breakdown cunditons[J]. Physics Uspekhi, 1994, 37: 247-69. 被引量:1
  • 3Fridman A, Kennedy L A. Plasma physics and engineering[M]. New York, USA: Taylor and Francis, 2004. 被引量:1
  • 4Macheret S O, Shneider M N, Miles R B. Modeling of air plasma generation by repetitive high-voltage nanosecond pulses[J]. IEEE Transactions on Plasma Science, 2002, 30: 1301-14. 被引量:1
  • 5Corker T C, Enloe C L, Wilkinson S E Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Me- chanics, 2010, 42: 505-529. 被引量:1
  • 6兰宇丹,何立明,王峰,杜宏亮,陈鑫,梁华.等离子体气动效应对燃烧室流场的影响[J].高电压技术,2012,38(1):217-222. 被引量:16
  • 7Moreau E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Apllied Physics, 2007, 40(3): 605-613. 被引量:1
  • 8朱益飞,贾敏,崔巍,李应红,吴云.大气压N_2-O_2混合气纳秒脉冲表面介质阻挡放电建模仿真[J].高电压技术,2013,39(7):1716-1723. 被引量:11
  • 9Opaits D F, Likhanskii A V, Neretti G; Experimental investigation of dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with DC or low frequency sinusoidal bias[J]. Journal of Applied Physics, 2008, 104(4): 3304. 被引量:1
  • 10Roupassov D V, Nikipelov A A, Nudnova M M. Flow separation con- trol by plasma actuator with nanosecond pulsed-periodic discharge[J]. A1AA Journal, 2009, 47: 168-85. 被引量:1

二级参考文献50

  • 1刘勇,何湘宁,马飞.介质阻挡放电和大气压辉光放电的分析和仿真[J].高电压技术,2005,31(6):55-58. 被引量:23
  • 2毛枚良,邓小刚,向大平,陈坚强.辉光放电等离子体对边界层流动控制的机理研究[J].空气动力学学报,2006,24(3):269-274. 被引量:9
  • 3Charles F Suchomel,David Van Wie,Daniel Risha. Perspectives on cataloging plasma technologies applied to aeronautical sciences[R]. USA: Aircraft Industries Association of America, 2003. 被引量:1
  • 4Bao Ainan, LOU Guofeng, Nishihara Munetake,et al. On the mechanism of ignition of premixed CO-air and hydrocarbon-air flows by nonequilibrium RF plasma [R]. USA: Aircraft Industries Association of America, 2005. 被引量:1
  • 5Klimov A, Byturin V, Kuimetsov A, et al. Optimization of plasma assisted combustion[R]. USA: Aircraft Industries Association of America, 2002. 被引量:1
  • 6Klimov A. Non-premixed plasma assisted combustion in high-speed airflow[R]. USA: Aircraft Industries Association of America, 2005. 被引量:1
  • 7Klimov A, Bityurin V, Brovkin V, et al. Optimization of plasma generators for plasma assisted combustion[R]. USA: Aircraft Industries Association of America, 2001. 被引量:1
  • 8Klimov A, Bityurin V, Kuznetsov A, et al. External and internal plasma-assisted combustion[R]. USA: Aircraft Industries Association of America, 2003. 被引量:1
  • 9Igor Matveev, Svetlana Matveeva, Alexander Gutsol, et al. Non-equilibrium plasma igniters and pilots for aerospace application[R]. USA: Aircraft Industries Association of America, 2004. 被引量:1
  • 10Aleksandrov A F, Bychkov V L, Chernikov V A, et al. Plasma aerodynamics investigations in msu physical department [R]. USA: Aircraft Industries Association of America, 2005. 被引量:1

共引文献25

同被引文献151

引证文献10

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部