摘要
确定Cartan不变量是代数群与相关的李型有限群的模表示理论中的一个重要方面.作者利用代数群模表示理论中的一系列结果,计算了3~n个元素的有限域上特殊线性群SL(3,3~n)和特殊酉群SU(3,3~n)的第一Cartan不变量,得到如下结论:当G=SL(3,3~n)时,C_(00)^((n))=a^n+b^n+6~n-2·8~n;而当G=SU(3,3~n)时,C_(00)^((n))=a^n+b^n+6~n-2·8~n+2·(1+(-1)~n),其中a,b是多项式x^2-20x+48的两个根.另外,作者也得到了射影不可分解模U_n(0,0)的维数公式:dim U_n(0,0)=(12~n-6~n+∈)·3^(3n),其中,当G=SL(3,3~n)时,∈=1;而当G=SU(3,3~n)时,∈=-1.
The determination of Cartan invariants is an important aspect in the modular representations of algebraic groups and related finite groups of Lie type.In this paper,the first Cartan invariants for the groups SL(3,3~n) and 5(7(3,3~n) are calculated by using some results from the representations of algebraic groups.Our main results are as follows:dim U_n(0,0) =(12~n-6~n+∈) · 3^(3n),where e = 1 when G = SL(3,3~n) and ∈ =-1 when G = SU(3,3~n),and C_(00)^((n)) = a^n + b^n + 6~n- 2 · 8~n,when G = SL(3,3~n),and C_(00)^((n)) = a^n + b^n + 6~n- 2 · 8~n + 2·(1 +(-1)~n),when G =SU(3,3~n),where a,b are the roots of the polynomial x^2-20 x + 48.
出处
《数学年刊(A辑)》
CSCD
北大核心
2015年第2期137-150,共14页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11071187)的资助