期刊文献+

SL(3,3~n)和SU(3,3~n)的第一Cartan不变量

The First Cartan Invariant of SL(3,3~n) and SU(3,3~n)
下载PDF
导出
摘要 确定Cartan不变量是代数群与相关的李型有限群的模表示理论中的一个重要方面.作者利用代数群模表示理论中的一系列结果,计算了3~n个元素的有限域上特殊线性群SL(3,3~n)和特殊酉群SU(3,3~n)的第一Cartan不变量,得到如下结论:当G=SL(3,3~n)时,C_(00)^((n))=a^n+b^n+6~n-2·8~n;而当G=SU(3,3~n)时,C_(00)^((n))=a^n+b^n+6~n-2·8~n+2·(1+(-1)~n),其中a,b是多项式x^2-20x+48的两个根.另外,作者也得到了射影不可分解模U_n(0,0)的维数公式:dim U_n(0,0)=(12~n-6~n+∈)·3^(3n),其中,当G=SL(3,3~n)时,∈=1;而当G=SU(3,3~n)时,∈=-1. The determination of Cartan invariants is an important aspect in the modular representations of algebraic groups and related finite groups of Lie type.In this paper,the first Cartan invariants for the groups SL(3,3~n) and 5(7(3,3~n) are calculated by using some results from the representations of algebraic groups.Our main results are as follows:dim U_n(0,0) =(12~n-6~n+∈) · 3^(3n),where e = 1 when G = SL(3,3~n) and ∈ =-1 when G = SU(3,3~n),and C_(00)^((n)) = a^n + b^n + 6~n- 2 · 8~n,when G = SL(3,3~n),and C_(00)^((n)) = a^n + b^n + 6~n- 2 · 8~n + 2·(1 +(-1)~n),when G =SU(3,3~n),where a,b are the roots of the polynomial x^2-20 x + 48.
出处 《数学年刊(A辑)》 CSCD 北大核心 2015年第2期137-150,共14页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.11071187)的资助
关键词 特殊线性群 特殊酉群 第一Cartan不变量 Special linear group, Special unitary group, First Cartan invariant
  • 相关文献

参考文献9

  • 1Cheng Y. On the first Cartan invariant in characteristic 2 of the groups SL3(2m) and SU3(2m) [J]. J Algebra, 1983, 82:194-244. 被引量:1
  • 2Chastkofsky L. On the Cartan invariants of a Chevalley group over GF(pn) [J]. J Algebra, 1992, 150:388-401. 被引量:1
  • 3Ye J C. On the first Carman invariant of the groups SL(3,pn) and SU(3,pn) [J]. Lecture Notes in Math, 1986, 1185:388-400. 被引量:1
  • 4Hu Y W, Ye J C. On the first Cartan invariant for finite groups of Lie type [J]. Com- munications in Algebra, 1993, 21:935-950. 被引量:1
  • 5Chastkofsky L. Projective characters for finite Chevalley groups [J]. J Algebra, 1981, 69:347-457. 被引量:1
  • 6Jantzen J C. Zur reduktion modulo p der Charaktere von Deligne und Lusztig [J]. J. Algebra, 1981, 70:452-474 (in German). 被引量:1
  • 7Jantzen J C. Representations of Chevalley groups in their own characteristic [J]. The Arcata Conference on Representations of Finite Groups, Sympos Pure Math, 1987, 47:127-146. 被引量:1
  • 8Humphreys J E. Some computations of Caftan invariants for the finite group of Lie type [J]. Comm Pure Appl Math, 1973, 26:745-755. 被引量:1
  • 9Humphreys J E. Modular representations of finite groups of Lie type [M]. London: Cambridge University Press, 2006. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部