期刊文献+

光照背景下自相关累积泰勒展开的弱亮点检测

Weak Spot Detection Based on Autocorrelation Cumulative Taylor Expansion in Light Background
下载PDF
导出
摘要 在光照背景下,弱亮点模型因为受到光照色差的干扰,导致对其检测较为困难。通过对光照背景下的弱亮点模型进行检测,特别是对光照背景下运动人体目标检测,是实现智能视频监控的基础工作。提出一种基于自相关累积泰勒展开的弱亮点目标图像检测算法,首先对光照背景下的弱亮点行人进行目标角点检测与预处理,对每个图层的自相关累积特征进行泰勒展开分离,形成原始的图层自相关累积泰勒展开库,求得小邻域内的亮度变化值,实现对光照背景下的弱亮点运动行人图像的角点检测,并作为前置处理算子,实现基于自相关累积泰勒展开的弱亮点行人检测算法改进。仿真实验表明,该检测算法得到的光照背景下的人体的轮廓特征得到准确凸显,检测性能较优,精度较高,鲁棒性好,在智能视频监控等领域具有重要的应用价值。 In the light of background, weak highlight model because of light color interference, leading to more difficult to detect. Through the detection of a weak spot model to the light conditions, especially for light moving human target detec?tion under, is the basis for the realization of intelligent video surveillance. Proposed an expansion of autocorrelation cumula?tive Taylor algorithm of target image detection based on weak spot, the first corner detection and processing weak spot pe?destrians is obtained in light background. Each layer of the autocorrelation accumulation awakened Taylor separation is tak?en, forming the original layer autocorrelation cumulative Taylor library, the brightness change small neighborhood values, corner weak spot moving pedestrian image on light background detection, it is taken as a pre-processing operator to achieve improved weak spot pedestrian detection algorithm based on Taylor expansion of autocorrelation accumulation. Sim?ulation results show that, the contours of the body characteristics of the detection algorithm of light background obtained prominent, it has a better detection performance, high accuracy, good robustness, it has important application value in the fields of intelligent video surveillance.
作者 顾成喜
出处 《科技通报》 北大核心 2015年第6期31-33,36,共4页 Bulletin of Science and Technology
基金 国家自然科学基金(61472268) 苏州市职业大学预研项目(2013SZDYY02) 苏州市科技支撑计划(SS201336)
关键词 光照背景 自相关累积量 运动目标 亮点模型 light background autocorrelation cumulant moving target highlight model
  • 相关文献

参考文献7

二级参考文献33

  • 1陈忠,赵学辉,孙秋瑞.基于OpenGL的三维人体运动模型实现[J].计算机应用,2008,28(S2):310-312. 被引量:4
  • 2王志勇,刘文奇.基于数学形态学的快速运动物体检测[J].计算机工程与科学,2005,27(1):27-28. 被引量:2
  • 3张波,田蔚风,金志华.Joint tracking algorithm using particle filter and mean shift with target model updating[J].Chinese Optics Letters,2006,4(10):569-572. 被引量:12
  • 4FREER A,BEGGS J.Automatic video surveillance with intelligent scene monitoring and intruder detection[A].30th Annual 1996 International Carnahan Conference on Security Technology[C].Lexington,KY,USA:IEEE,1996:89-94. 被引量:1
  • 5BRANCA A,SPAGNOLO P.Human motion tracking in outdoor environment[J].International Conference on Control Automation Robotics and Vision,2002,3(2):1585-1590. 被引量:1
  • 6SENST T, EVANGELIO R H, SIKORA T. Detecting people carrying objects based on an optical flow motion model [ C]//Proc of IEEE Workshop on Applications of Computer Vision. Washington DC : IEEE Computer Society, 2011 : 301 - 306. 被引量:1
  • 7WENG Mu-yun, HUANG Guo-ce, DA Xin-yu. A new interframe difference algorithm for moving target detection[ C ]//Proe of the 3rd International Congress on Image and Signal Processing: 2010: 285- 289. 被引量:1
  • 8MOHAMED S S, TAHIR N M, ADNAN R. Background modeling and background subtraction performance for objecl: detection [ C ]// Proc of the 6th International Colloquium on Signal Processing and Its Applications. 2010:236- 241. 被引量:1
  • 9STAUFFER C, GI'UMSON W E L. Learning patterns of activity using real-time tracking[ J ]. IEEE Trans on Pattern Analysis & Ma- chine Intelligence,2000,22 ( 8 ) :747- 757. 被引量:1
  • 10CHEN Yu-ting, CHEN Chu-song, HI.IANG Chun-rong, et al. Effi- cient hierarchical method for hackground subtraction [ J ]. Pattern Recognition ,2007,40(10) :2706-2715. 被引量:1

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部