期刊文献+

基于评论分析的评分预测与推荐 被引量:10

Analyzing reviews for rating prediction and item recommendation
下载PDF
导出
摘要 推荐系统广泛地应用在网络平台中,推荐模型需要预测用户的喜好,帮助用户找到适合的电影、书籍、音乐等商品.通过对用户评分和评论信息的分析,可以发现用户关注的商品特征,并根据商品的特征,推测用户对该商品的喜好程度.本文提出将评论中隐含的语义内容与评分相结合,设计并实现了一种新颖的商品推荐模型.首先利用主题模型挖掘评论文本中隐含的主题分布,用主题分布刻画用户偏好和商品画像,在逻辑回归模型上训练主题与打分的关系,最终评分可以被视为是对用户偏好和商品画像的相似程度的量化表示.最后,本文在真实数据上进行了大量对比实验,结果证明该模型比对比系统性能优越且稳定. Recommender systems are widely deployed in Web applications that need to predict the preferences of users to items.They are popular in helping users find movies,books,music,and products in general.In this work,we design a method for item recommendation based on a novel model that captures correlations between hidden aspects in reviews and numeric ratings.It is motivated by the observation that a user's preference against an item is affected by different aspects discussed in reviews.Our method first explores topic modeling to discover hidden aspects from review text.Profiles are then created for users and items separately based on aspects discovered in their reviews.Finally,we utilize logistic regression to model the user-item relationship and the rating is modeled as the similarity between user and item profiles.Experiments over real world reviews demonstrate the advantage of our proposal over state-of-the-art solution.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期80-90,共11页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金(61103039 61402177) 国家自然科学基金重点项目(61232002)
关键词 推荐 潜在主题 LDA 回归模型 评论分析 recommendation hidden aspect LDA regression model review analysis
  • 相关文献

参考文献20

  • 1RAJARAMAN A, ULLMAN J D. Mining of Massive Datasets[M]. London: Cambridge University Press, 2011. 被引量:1
  • 2BLANCO-FERNANDEZ Y, PAZOS-ARIAS J J, GIL-SOLLA A, et al. A flexible semantic inference methodolo- gy to reason about user preferences in knowledge-based recommender systems[J]. Knowledge-Based Systems, 2008, 21(4) : 305-320. 被引量:1
  • 3MCAULEY J, LESKOVEC J. Hidden factors and hidden topics: understanding rating dimensions with review text [C]//Proeeedings of the 7th ACM conference on Recommender systems. ACM, 2013: 165-172. 被引量:1
  • 4SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms [C]//Proceedings of the 10th international conference on World Wide Web. ACM, 2001 : 285-295. 被引量:1
  • 5KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8) : 30-37. 被引量:1
  • 6KOREN Y, BELL R. Advances in collaborative filtering[M]//KANTOR P B, RICCI F, ROKACH L, et al. Recommender Systems Handbook. New York: Springer, 2010: 145 -186. 被引量:1
  • 7BRODY S, EIHADAD N. An unsupervised aspect-sentiment model for online reviews[C]//Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 2010: 804-812. 被引量:1
  • 8JO Y, OH A H. Aspect and sentiment unification model for online review analysis[C]//Proceedings of the fourth ACM international conference on Web search and data mining. ACM, 2011: 815-824. 被引量:1
  • 9TITOV I, MCDONALD R. Modeling online reviews with multi-grain topic models[C]//Proceedings of the 17th international conference on World Wide Web. ACM, 2008: 111-120. 被引量:1
  • 10TITOV I, MCDONALD R T. A Joint Model of Text and Aspect Ratings for Sentiment Summarization[C]//ACL, 2008(8) : 308-316. 被引量:1

同被引文献37

引证文献10

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部