期刊文献+

移动平台全张量重力梯度数据的噪声抑制 被引量:2

Noise reducing of moving platform full tensor gravity gradient data
下载PDF
导出
摘要 全张量重力梯度仪器测量数据中包含了大量的白噪声和有色噪声。传统的数字滤波器只能滤除某一频段外的噪声,对于混叠在重力梯度有用信号频段范围内的有色噪声不能很好的对其进行分离。为了同时滤除白噪声和有色噪声,笔者利用卡尔曼滤波器采用增广矩阵法将全张量重力梯度数据中的有色噪声进行估计,在抑制白噪声的同时将有用信号和有色噪声分离,并利用数字滤波器与卡尔曼滤波器的优点,将其结合生了更好的滤波效果,得到了更高质量的梯度信号。通过模型试验验证了本方法对噪声的滤波能力,并满足高精度重力梯度数据处理要求。 The measurements of full tensor gradiometer include a lot of white noise and red noise. The tradi- tional digital filter can only removes the noise completely when it in a specify frequency band, but when the noise and the gradient signal have the same frequency band, the traditional filter cannot separate the noise from the gradi- ent signal well. In order to filter the white noise and red noise simultaneously, the authors use the Kalman filter with augmented matrix convert to estimate the red noise in fu]] tensor gravity gradient data, which achieved the aim that restraining the white noise and separating the red noise with the gradient signal, and combine the advantages of the digital filter and Kalman filter to get higher quality gradient signal. Model data have been used to identify the a- bility of the filters, which have satisfied the high precision requirements of processing the gravity gradient data,
出处 《世界地质》 CAS 2015年第2期491-496,共6页 World Geology
基金 长白山火山演变历史及潜在的危险(40930314)自然科学基金 内蒙古中部多金属矿综合地球物理勘查技术与示范(2006BAB01A02) 十一五国家科技支撑计划联合资助
关键词 卡尔曼滤波 全张量重力梯度仪 有色噪声 AR模型 增广矩阵法 Kalman filter full tensor gradiometer red noise AR model augmented matrix
  • 相关文献

参考文献17

二级参考文献60

  • 1张金焕,李晓斌.航空重力梯度测量系统发展及现状[J].中国矿业,2011,20(S1):188-192. 被引量:4
  • 2孙中苗,夏哲仁,石磐.航空重力测量研究进展[J].地球物理学进展,2004,19(3):492-496. 被引量:25
  • 3张开东,吴美平,胡小平.基于捷联惯导的航空重力测量滤波算法[J].中国惯性技术学报,2007,15(1):5-8. 被引量:3
  • 4William R G.An Historical Review of Airborne Gravity[J].The Leading Edge,1998(1):113-116. 被引量:1
  • 5Bruton A M.Improving the Accuracy and Resolution of SINS/DGPS Airborne Gravimetry[D].Calgary:Department of Geomatics Engineering at University of Calgary,2001. 被引量:1
  • 6Grewal M S,Andrews A P.Kalman Filtering:Theory and Practice Using MAYLAB[M].John Wiley & Sons,Inc.2001. 被引量:1
  • 7Kennedy S L.Acceleration Estimation from GPS Carrier Phase for Airborne Gravimetry[D].Calgary:Department of Geomatics Engineering at the University of Calgary,2002. 被引量:1
  • 8Mohamed A H.Optimizing the Estimation Procedure in INS/GPS Integration for Kinematic Application[D].Calgary:Department of Geomatics Engineering at the University of Calgary,1999. 被引量:1
  • 9Hammada Y.A Comparison of Filtering Techniques for Airborne Gravimetry[D].Calgary:Department of Geomatics Engineering at University of Calgary,1996. 被引量:1
  • 10DiFrancesco D,Meyer T,Christensen A,et al.Gravity gradiometry-today and tomorrow[C] // 11th SAGA Biennial Technical Meeting and Exhibition.Swaziland,2009:80-83. 被引量:1

共引文献78

同被引文献36

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部