期刊文献+

基于量子Haar小波变换的图像水印算法 被引量:2

Research on Image Watermarking Algorithm Based on Quantum Haar Wavelet Transform
下载PDF
导出
摘要 量子计算理论与传统的数字水印技术的结合,从理论上真正解决了数字产品安全性保护的瓶颈问题,为信息安全产业的研究也指明了新的方向。文章基于小波变换理论及其在图像水印算法中的应用和在云安全计算、大数据等方面有着广泛应用前景的量子计算理论,提出了一种基于量子Haar小波变换的图像水印算法。算法首先将经典图像用量子图像的形式表示出来,然后对量子化后的矩阵做量子Haar小波变换,最后将文本水印信息嵌入到量子小波系数中,在经典计算机上以矩阵变换模拟量子计算机上的量子小波变换来完成水印信息的嵌入等过程。实验结果表明,该算法有较大的嵌入容量;嵌入水印信息前后图像的计算基矢和相邻像素点的关联度变化都很小,因此该算法有较好的水印嵌入质量。 The traditional digital watermarking technology is relatively mature, but there are some areas has not been fully involved in, such as quantum image watermarking technique and the certification is currently in the initial stage of developing. All of this really solve the bottleneck problem of digital product safety protection on the theoretically by combining quantum computing theory and traditional digital watermarking technology and pointed out a new direction for the information security industry research. Based on wavelet transform theory and its applications in image watermarking algorithm and quantum computing theory have a wide range of applications in cloud security computing and big data, a watermarking algorithm based on quantum Haar wavelet transform is proposed. Algorithm firstly show classic image by using the quantum image representation, then do the quantum Haar wavelet transform of matrix quantization, and lastly text watermarking information is embedded into the quantum wavelet coefficients. Finish process of embed information etc by using matrix transform in classic computer simulate quantum wavelet transform in quantum computer. Experiment result shows that this algorithm has a large embedding capacity, there just subtle change of calculation basis and adjacent pixels correlations of image before and after embedded watermark information, indicates this algorithm have a higher watermark embedding quality.
出处 《信息网络安全》 2015年第6期55-60,共6页 Netinfo Security
基金 国家自然科学基金[40571128] 国家民委重点科研项目[MZY20004]
关键词 量子图像 移位矩阵 量子Haar小波变换 数字水印 quantum image shift matrix quantum Haar wavelet transform digital watermarking
  • 相关文献

参考文献9

  • 1朱金娥.量子水印技术研究的现状与前瞻[J].高等函授学报(自然科学版),2011,24(5):8-10. 被引量:2
  • 2GiulianoB,GiuLioC.量子计算与量子信息原理第一卷:基本概念[M],北京:科学出版社,2011:75-122. 被引量:1
  • 3MichaelAN,IsaackC.量子计算和量子信息[M].北京:清华大学出版社.2004. 被引量:1
  • 4Le P Q, Ding F, Hirota K A.Flexible representation of quantum image for polynomial preparation, image coinpression and processing operations[J].Quanttnn Inf.Process.2010, 10(1): 63 84. 被引量:1
  • 5孙力,须文波.量子Harr小波变换及其逻辑实现[J].计算机工程与设计,2007,28(1):4-5. 被引量:3
  • 6Zhang W W,Gao F,Liu B, et al.A watermark strategy for quantum images based on quanttun fourier transform[Jl.Quantum lnf Process, 2013,(12):793-803. 被引量:1
  • 7熊志勇,王江晴.基于互补嵌入的彩色图像可逆数据隐藏[J].光电子.激光,2011,22(7):1085-1090. 被引量:2
  • 8Song X H,Wang S,Liu S.A dynamic ,a, atermarking scheme for quantum images using quantum wavelet transformUI.Quantunl lnf Process, 2013, (12):3689-3706. 被引量:1
  • 9Yang Y GJia X,Sun S J, et al.Quantum cryptographic algorithm for color images using qtlantum Fourier transform and double random-phase encoding[J].Information Sciences, 2014, (9):445-457. 被引量:1

二级参考文献24

  • 1Xiaodong Yang,Daxiu Wei,Jun Luo,Xijia Miao.Preparation of pseudopure state in nuclear spin ensemble using CNOT gates combination[J].Chinese Science Bulletin,2002,47(22):1856-1860. 被引量:3
  • 2Gea-Banacloche J, Hiding messages in quantum data. Journal of Mathematic Physics, 43, 2002: 4531. 被引量:1
  • 3Worley III G G. Quantum watermarking by frequency of error when observing qubits in dissimilar bases. Quantum Physics, 2004: arXiv: ph/0401041v2. 被引量:1
  • 4Mogos G. International Symposium on Computer Science and its Applications, Australia, 24, 2008: 187. 被引量:1
  • 5Mogos G. Hiding Data in a Q-Image File. International Journal of Multimedia and Ubiquitous Engineering, 4, 2009:13. 被引量:1
  • 6Ioannis G Karafyllidis.Visualization of the quantum fourier transform using a quantum computer simulator[J].Quantum Information Processing,2003,2(4):271-288. 被引量:1
  • 7Arasu K T,de Lanney W.Two-dimensional perfect quaternary arrays[J].IEEE Trans Inform Theory,2001,47(4):1482-1493. 被引量:1
  • 8Jozsa R.Quantum factoring,discrete logarithms and the hidden subgroup problem[J].Computing in Science and Engineering,2001,3(2):34-43. 被引量:1
  • 9Zeyad Al Zhour,Adem Kilicman.Matrix equalities and inequalities involving Khatri-Rao and tracy-singh sums[J].Journal of Inequalities in Pure and Applied Mathematics,2006,7(1):496-513. 被引量:1
  • 10Fatih Bulut,Polyzou W N.Wavelet methods in the relativistic three-body problem[J].Phys Rev C,2006,73:34-48. 被引量:1

共引文献3

同被引文献19

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部