摘要
定义了环R的一个子集,记做J(R)(12)={a∈R|a2∈J(R)}.称环R中的一个元素a是强J12-clean元,如果存在一个幂等元e∈R和一个元素w∈J(R)(1/2)使得a=e+w且ew=we.如果环R中每个元素都是强J12-clean元,称环R是强J12-clean环.文章研究了强J12-clean环的一些性质和局部环上矩阵环的强J12-clean性.
A subset of R is defined and marked as J(R)={a∈ R|a2 ∈ J(R)} .An element a∈ R is called strongly J12‐clean element ,provided that there exists an idempotent e∈ R and an element w∈ J(R) such that a= e+ w and ew= we .A ring R is strongly J12‐clean ring if every element in R is strongly J12‐clean element .This article studies the properties of strongly J12‐clean ring and the property of strongly J12‐clean of matrix rings on local rings .
出处
《杭州师范大学学报(自然科学版)》
CAS
2015年第3期323-328,共6页
Journal of Hangzhou Normal University(Natural Science Edition)