期刊文献+

压电层厚度对d_(15)模式PZT-51悬臂梁俘能特性影响

Effect of Piezoelectric Film Thickness on Energy Harvesting Performance of d_(15) Mode PZT-51 Cantilever Beam
下载PDF
导出
摘要 设计并制作了压电层厚度分别为0.6mm、0.7mm、0.8mm、0.9mm的d15模式层合串联结构PZT-51压电悬臂梁俘能器。测量了开路和1.0 MΩ负载下,俘能器的振动频率与输出电压和输出功率的关系曲线,以及1.0 MΩ负载时的振动激励电压与输出峰-峰值电压关系曲线。结果表明,随着压电层厚度的减少,压电俘能器的谐振频率降低,输出电压和功率增大。压电层厚度为0.6 mm的压电俘能器具有最大开路输出电压1.69 V,在1.0 MΩ负载下最大输出功率为0.708μW。 The dis mode PZT-51 piezoelectric energy harvesters(PEHs), which of piezoelectric layer thicknesses were 0.6 mm,0.7 mm,0.8 mm,and 0.9 mm respectively,were designed and fabricated. The curves of vibration frequency versus output voltage and output power were measured at open circuit and load resistance of 1 MΩ, and the dependence of output peak-peak voltage on input vibration excitation voltage was also tested at load resistance of 1 MΩ. It is shown that with the decrease of piezoelectric layer thickness, the resonant frequency of PEH decreases, while the output voltage and output power increase. The laminated structure d15 mode PZT-51 PEH with piezoelec- tric layer thickness of 0.6 mm shows the maximum open circuit output peak voltage of 1.69 V and maximum output power of O, 708 μW at load resistance of 1 MΩ
出处 《压电与声光》 CSCD 北大核心 2015年第3期493-496,共4页 Piezoelectrics & Acoustooptics
基金 国家自然科学基金资助项目(51272158) 长江学者奖励计划基金资助项目([2009]17) 上海市自然科学基金资助项目(14ZR1428000)
关键词 d15模式 PZT-51 压电俘能器 层合结构 悬臂梁 d15 mode PZT-51 piezoelectric energy harvester laminated structure cantilever beam
  • 相关文献

参考文献17

  • 1蒋树农,郭少华,李显方.单压电片悬臂梁式压电俘能器效能分析[J].振动与冲击,2012,31(19):90-94. 被引量:14
  • 2ERTURK A,INMAN D J.An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations[J].Smart Mater Struct,2009,18:025009. 被引量:1
  • 3AMMAR Y,BUHRIG A,MARZENCKI M,et al.Wireless sensor network node with asynchronous architecture and vibration harvesting micro-power generator[C]//Grenoble:Proc 2005Joint Conf.on Smart Objects and Ambient Ibeuntelligence:Innovative Context-Aware Services:Usages and Technologies,2005:287-292. 被引量:1
  • 4刘祥建,陈仁文.压电振动能量收集装置研究现状及发展趋势[J].振动与冲击,2012,31(16):169-176. 被引量:82
  • 5MAJIDI C,HAATAJA M,SROLOVITZ D J.Analysis and design principles for shear-mode piezoelectric energy harvesting with ZnO nanoribbons[J].Smart Mater Struct,2010,19:055027. 被引量:1
  • 6JEON Y B,SOOD R,JEONG J H,et al.MEMS powei generator with transverse mode thin film PZT[J].Sens Actuators A,2005,122(1):16-22. 被引量:1
  • 7REN B,OR S W,ZHANG Y Y,et al.Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 single crystal cantilever[J].Appl Phys Letter,2010,96:083502. 被引量:1
  • 8CHEN S C,CHENG C H,LIN Y C.Analysis and experiment of a novel actuating design with a shear mode PZT actuator for microfluidic application[J].Sens Actuators A,2007,135:1-9. 被引量:1
  • 9WANG D A,LIU N Z.A shear mode piezoelectric energy harvester based on a pressurized water flow[J].Sens.Actuators A,2011,167:449-458. 被引量:1
  • 10ZHOU L,SUN J,ZHENG X J,et al.A model for the energy harvesting performance of shear mode piezoelectric cantilever[J].Sensor Actuat A-Phys,2012,179:185-192. 被引量:1

二级参考文献53

  • 1HU Yuantai1,2,HU Hongping2 & YANG Jiashi3 1. Institute of Mechanics and Sensing Technology,Central South University,Changsha 410083,China,2. Department of Mechanics,Huazhong University of Science and Technology,Wuhan 430074,China,3. Department of Engineering Mechanics,University of Nebraska,Lincoln,NE 68588-0526,USA.A low frequency piezoelectric power harvester using a spiral-shaped bimorph[J].Science China(Physics,Mechanics & Astronomy),2006,49(6):649-659. 被引量:9
  • 2周洋,万建国,陶宝祺.PVDF压电薄膜的结构、机理与应用[J].材料导报,1996,10(5):43-47. 被引量:22
  • 3唐彬,温志渝,温中泉,董媛.振动式微型发电机的研究现状与发展趋势[J].微纳电子技术,2007,44(5):254-258. 被引量:6
  • 4Guan M J, Liao W H. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages[ J]. Smart Materials and Structures, 2007, 16(2) : 498 -505. 被引量:1
  • 5Roundy S, Wright P K, Pister K S. Micro-electrostatic vibration to electricity converters [ C ]. Proceedings of ASME International Mechanical Engineering Congress & Exposition. New Orleans, Louisiana: ASME, 2002:1 - 10. 被引量:1
  • 6Wang P H, Dai X H, Fang D M, et al. Design, fabrication and performance of a new vibration-based electromagnetic micro power generator[ J]. Microelectronics, 2007, 38( 12): 1175 - 1180. 被引量:1
  • 7Sbearwood C, Yates R B. Development of an electromagnetic micro-generator [ J ]. Electronics Letters, 1997, 33 ( 22 ) : 1883 - 1884. 被引量:1
  • 8Mitcheson P D, Miao P, Stark B H, et al. MEMS electrostatic micropower generator for low frequency operation [J]. Sensors and Actuators A, 2004, 115 (2 - 3) : 523 - 529. 被引量:1
  • 9Shen D, Park J H, Ajitsaria J, et al. The design, fabrication and evaluation a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting [ J ]. Journal of Micromechanics and Microengineering, 2008, 18(5) : 550- 557. 被引量:1
  • 10Chew Z J, Li L J. Design and characterization of a piezoelectric scavenging device with multiple resonant frequencies[J]. Sensors and Actuators A, 2010, 162( 1 ): 82 - 92. 被引量:1

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部