期刊文献+

光子晶体磁性微腔非对称耦合的非互易传输 被引量:6

Nonreciprocal Transmission Based on Nonsymmetric Coupling of Magnetic Microcavity in Photonic Crystal
原文传递
导出
摘要 为了实现光的非互易性传输,在一维光子晶体中插入两个非对称的金属磁性材料缺陷层。插入的金属磁性材料在光子晶体中形成了不对称的磁性微腔。运用适用于磁光材料的传输矩阵方法研究结构的传输特性。由于金属磁性材料破坏时间反转对称,同时非对称微腔结构打破了空间反转对称,使得结构产生了非互易性的传输。随着入射角度的增大,非互易通道的间距也不断增加,并在50°时达到最大值,然后逐渐减小。当外加磁场增大时,非互易通道的间距也随之不断增大并且在某一特定值时达到最大值。最终的结果采用基于有限元法的电磁场仿真软件进行仿真验证。 A one-dimensional photonic crystal structure including two nonsymmetric magneto-optical (MO) metal defects is proposed to achieve nonreciprocal transmission. The nonsymmetric magnetic microcavities are made of the MO metal defects in photonic crystal. The transmission properties of the structure are studied by the transfer matrix method based on the MO material. The MO effect breaks the time-reversal symmetry while the coupling of two nonsymmetric microcavities breaks the mirror symmetry, which results in nonreciprocal transmission. With the increase of incident angle, the interval of two nonreciprocal tunneling channels increases and reaches its maximum at 50~. When the external magnetic field increases, the interval of two nonreciprocal tunneling channels increases and reaches a maximum at a certain value. The results are demonstrated through an electromagnetic field simulation based on the finite element solver.
出处 《中国激光》 EI CAS CSCD 北大核心 2015年第6期209-215,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(11304126)
关键词 物理光学 光子晶体 非互易性 缺陷模 磁光效应 磁性微腔 physical optics photonic crystal nonreciprocity defect mode magneto-optical effect magnetic microcavity
  • 相关文献

参考文献14

  • 1Yablonovitch E, Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059-2062. 被引量:1
  • 2John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett, 1987, 58(23): 2486-2489. 被引量:1
  • 3Haldane F D M, Raghu S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Phys Rev Lett, 2008, 100(1): 013904. 被引量:1
  • 4Raghu S, Haldane F D M. Analogs of quantum-Hall-etect edge states in photonic crystals[J]. Phys Rev A, 2008, 78(3): 033834. 被引量:1
  • 5Rueter C E, Makris K G, E Ganainy R, et al.. Observation of paritytime symmetry in optics[J]. Nature Phys, 2010, 6(3): 192-195. 被引量:1
  • 6Feng L, Ayache M, Huang J, et al.. Nonreciprocal light propagation in a silicon photonic cireuit[J]. Science, 2011,333(6043): 729-733. 被引量:1
  • 7任尚坤,张凤鸣,都有为.半金属磁性材料[J].物理学进展,2004,24(4):381-397. 被引量:22
  • 8Jin C J, Cheng B Y, Man B Y, et al.. Two-dimensional dodecagonal and decagonal quasi-periodic photonic crystals in the microwave region[J]. Phys Rev B, 2000, 61(16): 10762-10767. 被引量:1
  • 9Biswas R, Sigalas M M, Subramania G, et al.. Pholunie band gaps of porous solids[J]. Phys Rev B, 2000, 61(4): 4549-4553. 被引量:1
  • 10Artiqas D, Torner L. Dyakonov surfaee waves in photonie melamaterials[J]. Phys Rev Lett, 2005, 94(1): 013901. 被引量:1

二级参考文献68

  • 1Guinea P. Phys. Rev. B, 1998, 58: 9212(1-5). 被引量:1
  • 2Monsma D J, Parki S. Appl. Phys. Lett., 2000, 77: 720-722. 被引量:1
  • 3Watts S M, Wirth S, yon Molna r S. Phys. Rev. B, 2000, 61: 9621(1-8). 被引量:1
  • 4Kamper K P, Schmitt W, Güntherodt G, et al. Phys. Rev. Lett., 1987, 59:2788 (1-4). 被引量:1
  • 5Goodenough J B. In Progress in Solid State Chemistry. Oxford: Pergamon, edited by H. Reiss, 1971.145. 被引量:1
  • 6Schwardz K. J. Phys. F: Met. Phys. 1986, 16: 211-215. 被引量:1
  • 7Korotin M, Anisimov V, Khomskii D I, et al. Phys. Rev. Lett,1998, 80:4305(1-4). 被引量:1
  • 8Mazin I. Singh D J, Ambrosch D C. Phys. Rev. B, 1999, 59: 411(1-5). 被引量:1
  • 9Ranno L, Barry A, Coey L MD. J. Appl. Phys., 1997, 81:5774. 被引量:1
  • 10Yu V, Irkhin, Katsnelson M. Phys. Usp., 1994, 37: 659. 被引量:1

共引文献287

同被引文献46

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部