期刊文献+

一种改进的决策树后剪枝算法 被引量:17

An Improved Post-Pruning Algorithm for Decision Tree
下载PDF
导出
摘要 当深度和节点个数超过一定规模后,决策树对未知实例的分类准确率会随着规模的增大而逐渐降低,需要在保证分类正确率的前提下,用剪枝算法对减小决策树的规模。论文在对现有决策树剪枝算法优缺点进行分析的基础上,提出了一种综合考虑分类精度、分类稳定性以及决策树规模的后剪枝改进算法,并通过实验证明了该算法在保证模型判别精度和稳定性的前提下,可以有效地减小了决策树的规模,使得最终的自动判别模型更加简洁。 The classification accuracy of a decision tree would be lower when the depth and the nodes exceed a certain size.So it's necessary to reduce the scale of decision tree by using apruning algorithm and ensure the accuracy of classification at the same time.To solve this problem,a kind of post-pruning strategy which evenly considers classification accuracy,classification stability,and the scale of decision tree is proposed on the basis of in-depth study of the existing decision tree pruning algorithm.Experimental results show that this improved post-pruning algorithm can effectively reduce the size of the decision tree,ensure the accuracy and stability,and make the final model more compact.
作者 郑伟 马楠
出处 《计算机与数字工程》 2015年第6期960-966,971,共8页 Computer & Digital Engineering
关键词 分类算法 决策树 剪枝算法 classification algorithm, decision tree, pruning algorithm
  • 相关文献

参考文献10

  • 1栾丽华,吉根林.决策树分类技术研究[J].计算机工程,2004,30(9):94-96. 被引量:116
  • 2Vapnik V. The nature of statistical learning theory [M]. Berlin: Springer, 1999:22-31. 被引量:1
  • 3约翰洛西.科学哲学历史导论[M].武汉:华中工学院出版社,1982:117-130. 被引量:2
  • 4王名扬..基于粗糙集理论的决策树生成与剪枝方法[D].东北师范大学,2005:
  • 5李道国,苗夺谦,俞冰.决策树剪枝算法的研究与改进[J].计算机工程,2005,31(8):19-21. 被引量:30
  • 6Quinlan J R. Simplifying decision trees[J]. Interna- tional journal of man-machine studies, 1987,27(3) : 221- 234. 被引量:1
  • 7张宇..决策树分类及剪枝算法研究[D].哈尔滨理工大学,2009:
  • 8王黎明..决策树学习及其剪枝算法研究[D].武汉理工大学,2007:
  • 9陈杰..基于遗传算法的决策树剪枝方法[D].河北大学,2010:
  • 10金效行..决策树算法在网站服务器日志分析中的应用[D].复旦大学,2011:

二级参考文献8

  • 1Quinlan J R. Simplifying Decision Trees.International Journal of Man-machine Studies,1987,27: 221-234. 被引量:1
  • 2Quinlan J R. Induction of Decision Trees. Machine Learning,1986,181:106. 被引量:1
  • 3Han J, Kambr M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2001:279-333 被引量:1
  • 4Ruggieri S. Efficient C4.5. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(2):438-444 被引量:1
  • 5Breiman L, Friedman JH, Olshen RA, et al. Classification and Regression Trees. Chapman & Hall(Wadsworth, Inc.): New York, 1984 被引量:1
  • 6Mehta M, Agrawal R, Rissancn J. SLIQ: A Fast Scalable Classifier for Data Mining. Research Report, IBM Almaden Research Center, San Jose, California, 1995 被引量:1
  • 7Shafer J, Agrawal R, Mehta M. SPRINT: A Scalable Parallel Classifier for Data Mining. Research Report, IBM Almaden Research Center,San Jose, California, 1996 被引量:1
  • 8Rastogi R, Shim K. PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning. Technical Report, Bell Laboratories, Murray Hill, 1998 被引量:1

共引文献144

同被引文献160

引证文献17

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部