期刊文献+

基于堆栈式自编码器的尾矿库安全评价 被引量:7

Safety evaluation of the tailing pond based on stacked auto-encoder
下载PDF
导出
摘要 为有效评估尾矿库的安全状况,针对尾矿库数据的随机波动性、非线性和多数据源的特点,采用堆栈式自编码器算法对尾矿库进行安全评价.基于多层结构、稀疏性限制,该算法采用贪心逐层训练策略对网络权值进行优化,进而对尾矿库进行安全评价.结合淳安某尾矿库的数据进行了安全评价的仿真实验,结果表明:堆栈式自编码器算法能克服多层网络结构权值易陷入局部最小值的缺陷,有效刻画数据的非线性和随机波动性,具备良好的评价准确率. For the purpose of evaluating the safety status of tailing pond, a prediction model is established by adopting stacked auto-encoder algorithm according to the characteristics of stochastic fluctuation, non-linear and multiple data sources. Based on the multi-level architectures and sparsity limitation, this algorithm uses Greedy Layer-wise Algorithm to train parameters in order to optimize the network weights. The applied safety evaluation on Chunan tailing pond shows that stacked auto-encoder could overcome the defect that the optimized network weights will be easy to fall into local minimum in the multi-level architectures. It can effectively describe characterization of nonlinear and stochastic volatility of the data with a good evaluation accuracy.
出处 《浙江工业大学学报》 CAS 北大核心 2015年第3期326-331,共6页 Journal of Zhejiang University of Technology
关键词 堆栈式自编码器 尾矿库 安全评价 稀疏性 stacked auto-encoder tailing pond safety evaluation sparsity
  • 相关文献

参考文献14

二级参考文献57

共引文献176

同被引文献89

引证文献7

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部