摘要
大豆花荚脱落率和单株荚数是影响大豆单株产量的两个主要性状。研究以花荚脱落率高的大豆品种吉育73为母本及花荚脱落率低的铁荚四粒黄为父本,构建了样本容量为100的F2遗传群体。所构筑的遗传图谱总长为1 351.5 c M,具34个连锁群。利用多QTL模型(MQM)对该群体花荚脱落率和单株荚数进行QTL定位,共鉴定出2个花荚脱落率QTL,同位于GM16染色体上,遗传贡献率分别为10.9%和9.7%;同时鉴定出5个控制单株荚数的QTL,分别位于GM02、GM07、GM10、GM04和GM05染色体上,遗传贡献率介于8.8%~15.9%之间。研究结果为大豆花荚脱落性状QTL的精细定位、候选基因克隆和分子标记辅助育种提供了理论基础和育种材料。图1,表3,参34。
Flower and pod abscission rate and pod number per plant are two key factors that influence plant yield in soybean. A F2 population of 100 plants derived from a cross between cultivar Jiyu 73 and Tiejiasilihuang,both of which have contrasting flower and pod abscission rates. A genetic linkage map of soybean was constructed,that consisting 34 linkage groups covering 1351. 5 c M. The multiple-QTL models( MQM) was used to identify quantitative trait loci( QTL) associated with flower and pod abscission rate and pod number per plant. Two QTLs were identified for flower and pod abscission rate on the same chromosome 16( GM16) and their genetic contribution rates were 10. 9% and 9. 7%,respectively. Five QTLs for pods number per plant were detected on chromosome GM02,GM07,GM10,GM04 and GM05,respectively. The genetic contribution rates were from 8. 8% to 15. 9%. The results obtained in this study will be useful for further fine mapping,gene cloning and marker assisted selection of these traits.
出处
《土壤与作物》
2015年第2期71-76,共6页
Soils and Crops
基金
黑龙江省自然科学基金重点项目(ZD201409)
关键词
大豆
花荚脱落率
单株荚数
QTL
soybean
flower and pod abscission rate
pod number per plant
QTL