期刊文献+

多阶段可替换分组并行机调度问题的求解 被引量:2

Method for multi-stage alternative grouping parallel machines scheduling problem
下载PDF
导出
摘要 针对一类多阶段可替换分组并行机混流生产调度问题,以最小化最大完工时间为目标建立问题的数学模型,提出一种嵌入混合启发规则的遗传算法,采用分段独立编码的染色体和改进的遗传算子.依靠遗传算法的全局搜索能力确定启发规则的最优决策变量,根据决策变量采用包含多种规则的混合规则确定各阶段调度方案;同时解决了调度问题的路径选择子问题和加工排序子问题,调度方案自动满足模型约束.算法求解速度快,求解结果具有较高的负荷平衡率.针对不同规模的算例,仿真验证了算法的有效性,仿真结果表明该算法的综合性能指标优于嵌入单一启发规则的遗传算法. To solve the mixed flow scheduling problem with multi-stage alternative grouping parallel ma- chines, the mathematical model to minimize the maximum completion time was constructed and a hybrid heuristic-genetic algorithm was developed, the algorithm bases on piecewise independent coding method and modified genetic operators. The optimal decision variables of scheduling rules is determined by the global search ability of genetic algorithm. Scheduling scheme of each stage is determined by using the deci- sion variables and the hybrid heuristic rules which contains a variety of scheduling rules. The algorithm can solve path selection sub-problems and processing sorting sub-problems at the same time, and the re- sults automatically satisfy model constraints. This algorithm has following advantages: high arithmetic speed, optimum results taking into higher rates of load-balancing and etc. Simulation examples of different scales verify the effectiveness of the algorithm. The comparison indicates that the composite indicator of this algorithm is superior to that of single heuristic-genetic algorithms.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第5期866-872,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金创新研究群体科学基金资助项目(51221004)
关键词 并行多机调度 启发式算法 遗传算法 parallel machines scheduling heuristic algorithm genetic algorithm
  • 相关文献

参考文献11

二级参考文献59

  • 1潘全科,朱剑英.一类解决Job Shop问题的禁忌搜索算法[J].中国机械工程,2006,17(5):536-539. 被引量:16
  • 2GRAHAM R L, LAWLER E L, LENSTRA J K, et al. Optimization and approximation in deterministic sequencing and scheduling: A survey[J]. Annals of Discrete Mathematics, 1979, 5: 287-326. 被引量:1
  • 3PINEDO M. Scheduling: Theory, algorithms, and systems[M]. New Jersey: Prentice-Hall, Englewood Cliffs, 1995. 被引量:1
  • 4MOKOTOFF E. Parallel machine scheduling problems: A survey[J]. Asia-Pacific Journal of Operational Research, 2001, 18(2): 193-242. 被引量:1
  • 5ALLAHVERDI A, GUPTA J N D, ALDOWAISAN T. A review of scheduling research involving setup considerations[J]. Omega, 1999, 27(2). 219-239. 被引量:1
  • 6ALLAHVERDI A, NG C T, CHENG T C E, et al. A survey of scheduling problems with setup times or costs[J]. European Journal of Operational Research, 2008, 187(3): 985-1032. 被引量:1
  • 7GOLDBERG D E. Genetic algorithms in search, optimization and machine learning[M]. New Jersey: Addison-Wesley, 1989. 被引量:1
  • 8LOPES M J P, CARVALHO J M V D. A branch-and-price algorithm for scheduling parallel machines with sequence dependent setup times[J]. European Journal of Operational Research, 2007, 176(3): 1508-1527. 被引量:1
  • 9YALAOUI F, CHU C. An efficient heuristic approach for parallel machine scheduling with job splitting and sequence-dependent setup times[J]. IIE Transactions, 2003, 35(2): 183-190. 被引量:1
  • 10CARTER A E, RAGSDALE C T. A new approach to solving the multiple traveling salesperson problem using genetic algorithms[J]. European Journal of Operational Research, 2006, 175(1): 246-257. 被引量:1

共引文献90

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部