期刊文献+

改进SURF算法在图像汉字识别中的应用 被引量:2

Application of improved SURF algorithm in image Chinese character recognition
下载PDF
导出
摘要 针对复杂背景下汉字匹配准确率较低的问题,提出一种改进的SURF算法。该算法利用灰度分级的字符分割方法,先进行灰度分割增强图像的对比度,采用灰度分级树将图像中的所有像素处理为树的模式进行计算,根据灰度分级确定主节点,根据主节点的级别所对应的灰度值对图像进行分割。同时,根据汉字结构的特殊性,取消了SURF算法的旋转不变性。实验结果表明,与未使用改进的SURF算法相比,对图像质量较差的文本图像,改进的SURF算法能有效地提高其匹配的准确率。 Aiming at the low matching accuracy of Chinese characters, an improved algorithm of SURF is presented. The algorithm is based on gradation character segmentation. Contrast of image is enhanced by using gray level segmentation, and then with the gray level classification tree, all pixels in the image are processed to the tree model. According to the gray level classification, the main node is determined. Grey level corresponding to the main node level is used in image segmentation. According to the particularity of Chinese characters, the rotation invariance of SURF algorithm is cancelled. Experimental results show that the improved algorithm can improve the matching accuracy effectively, especially for text image of poor quality.
作者 孟伟 钟娜
出处 《计算机工程与应用》 CSCD 北大核心 2015年第12期156-160,共5页 Computer Engineering and Applications
基金 中央高校基本科研业务费专项资金资助(No.TD2014-01)
关键词 复杂背景 汉字匹配 快速鲁棒特征(SURF)算法 灰度分级 字符分割 complex background Chinese characters matching Speeded-Up Robust Features (SURF) algorithm gray classification character segmentation
  • 相关文献

参考文献20

  • 1宋佳.模式识别综述及汉字识别的原理[J].科技广场,2007(9):133-135. 被引量:5
  • 2马健物联网技术概论[M].北京:机械工业出版社,2011. 被引量:2
  • 3Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision, 2004(2) : 1-5. 被引量:1
  • 4张世辉,孔令富.汉字识别及现状分析[J].燕山大学学报,2003,27(4):367-369. 被引量:7
  • 5刘聚宁.印刷体汉字识别系统研究与实现[D].大连:大连理工大学,2011. 被引量:3
  • 6金贞,齐开悦,陈凯.一种适用于复杂图像的汉字特征[J].信息安全与通信保密,2010,7(2):62-64. 被引量:4
  • 7武桐..基于图像匹配的汉字识别系统研究与实现[D].上海交通大学,2010:
  • 8Bay H, Tuvtellars T, van Gool L.SURF: Speeded Up Robust Features[C]//Proceedings of the European Con- ference on Intelligent and Autonomous Sytems,Toulouse, France, 2007 : 2-12. 被引量:1
  • 9Mikolajczyk K, Schmid C.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 ( 10 ) : 1615-1630. 被引量:1
  • 10Mikolajczyk K,Tuytelaars T, Schmid C, et al.A compari- son of affine region detectors[J].International Journal of Computer Vision,2005(6) :43-72. 被引量:1

二级参考文献38

  • 1何江平,文俊浩,邓恬洁,王道乾.基于支持向量机的图像识别[J].重庆大学学报(自然科学版),2006,29(1):57-60. 被引量:9
  • 2杨子华,吴敏,刘琤.基于灰度共生矩阵的笔迹识别[J].信息安全与通信保密,2006,28(6):81-83. 被引量:5
  • 3刘昌平.汉字识别技术现状与展望[A]..中文信息学会北京论文集[C].,2001.108-110. 被引量:1
  • 4George Nagy, Senior Member. Twenty Years of Document Image Analysis in PAMI[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, 22(01): 38-62. 被引量:1
  • 5Trier D, Jain A K, Taxt T. Feature Extraction Methods for Character Recognition-A Survey[J]. Pattern Recognition, 1996, 29(04): 641-662. 被引量:1
  • 6Lowe D. Distinctive Image Features from ScaleInvariant Keypoints[J]. Computer Vision, 2004, 60 (02): 91-110. 被引量:1
  • 7Belongie S, Malik J, Puzicha J. Shape Matching and Object Recognition Using Shape Context[J]. Pattern Analysis and Machine Intelligence, 2004, 24(04): 831-837. 被引量:1
  • 8Canny J. A Computational Approach to Edge Detection[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1986, 86(06): 678-698. 被引量:1
  • 9Yi Zhou, Qi Zheng, Kai Chen. Chinese Character Recognition Using Local Feature[EB/OL]. [2009-07- 30]. http: //cbir.sjtu.edu.cn/kchen/. 被引量:1
  • 10Casey R, Nagy G. Recognition of printed Chinese character. IEEE Trans. On Elec Comput, 1966,1 (15): 91-101. 被引量:1

共引文献34

同被引文献15

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部