期刊文献+

协同过滤推荐系统中“孤独用户”问题研究——基于社会网络分析

Leveraging Social Network Analysis Approaches to Solve the Black-sheep Users Problem in Collaborative Filtering Recommendation Systems
下载PDF
导出
摘要 随着电子商务的发展,推荐系统已成为最重要的技术之一。针对传统协同过滤推荐算法的"孤独用户"问题,提出了一种融合了社会网络分析的方法来解决此问题。即通过SNA的度中心性来将数据集分为"孤独用户"和"非孤独用户"组,不同的相似度测量和推荐方法被应用到两个数据组。实验表明,相对于传统的协同过滤算法,该方法能够显著提高推荐系统的性能,有效缓解"孤独用户"带来的问题。 With the development of electronic commerce, recommendation system has become one of the most important technologies. To solve the black sheep users problem in collaborative filtering recommendation systems, social network analysis approaches is applied: Through calculating degree centrality of each node, the datasct is divided into two parts of black sheep and non-black sheep based on the degree centrality of the users. This study empirically shows that the characteristics of dataset can affect the performance of CF recommenda- tion systems; the method proposed can be useful for solving the black sheep problem.
作者 吴晓飞
出处 《情报杂志》 CSSCI 北大核心 2015年第6期169-173,共5页 Journal of Intelligence
关键词 电子商务 协同过滤 推荐系统 社会网络分析 孤独用户 E-commerce collaborative filtering recommendation system social network analysis black sheep user
  • 相关文献

参考文献15

  • 1Greco G, Greco S, Zumpano E. Collaborative Filtering Support- ing Web Site Navigation [ J ]. AI Communications,2004 ( 3 ) : 155 -166. 被引量:1
  • 2Vezina R, Militaru D. Collaborative Filtering: Theoretical Posi- tions and a Research Agenda in Marketing [ J ]. International Journal of Technology Management,2004 ( 1 ) :31-45. 被引量:1
  • 3Su X, Khoshgoftaar T M. A Survey of Collaborative Filtering Techniques [ J ]. Advances in Artificial Intelligence, 2009 (4) :1 -19. 被引量:1
  • 4Claypool M, Gokhale A, Mir T, et al. Combining Content-based and Collaborative Filters in an Online Newspaper. In Proceedings of ACM SIGIR Workshop on Recommender Systems. Berkeley, California. ACM, 1999. 被引量:1
  • 5张莉,滕丕强,秦桃.利用社会网络关键用户改进协同过滤算法性能[J].情报杂志,2014,33(4):196-200. 被引量:8
  • 6张驰,陈刚,王慧敏.基于混合推荐技术的推荐模型[J].计算机工程,2010,36(22):248-250. 被引量:14
  • 7Newman M E J, The Structure and Function of Complex Net- worksE J]. Siam Review ,2003 (2). 被引量:1
  • 8郭世泽,陆哲明.复杂网络基础理论[M].北京:科学出版社,2012. 被引量:33
  • 9Hemiques Abrvu P, et al. Using Model-based Collaborative Fil- tering Techniques to Recommend the Expected Best Strategy to Defeat a Simulated Soccer Opponent[J]. Intelligent Data Analy- sis, 2014 (5) :973:991. 被引量:1
  • 10Ali Ghazanfar M. Robust, Scalable, and Practical Algorithms for Recommender Systems [ D ]. Hampshire, University of South- ampton, 2012. 被引量:1

二级参考文献22

  • 1Sinha Rashmi, Kirsten Swearingen. Comparing Recommenda- tions Made by Online Systems and ~ien.ds[ C]. Proceedings of the Delos-NSF workshop on personalization and recommender systems in digital libraries,2001, (106). 被引量:1
  • 2Ziegler C N, Lausen G. Analyzing Correlation between Trust and User Similarity in Online Communities [ M ]~ Trust Manage- ment. SpringerBerlin Heidelberg, 251-265,2004. 被引量:1
  • 3He J, Chu W W. A Social Network-based Recommender System (SNRS) [ M]. Springer US, 47-74,2010. 被引量:1
  • 4Yuan Q, Zhao S, Chen L, et al. Augmenting Collaborative Recommender by Fusing Explicit Social Relationships [ C ]. Wor-kshop on Recommender Systems and the Social Web, Recsys 2009,49-56,2009. 被引量:1
  • 5De Meo P, Ferrara E, Fiumara G, et al. Improving Recon:men- dation Quality by Merging Collaborative Filtering and Social Re- lationships[ C]. 2011 1 lth International Conference on Intelligent Systems Design and Applications (ISDA) ,587-592,2011. 被引量:1
  • 6Massa P, Avesani P. Trust-aware Collaborative Filtering for Recommender Systems[ M]. On the Move to Meaningful Internet Systems 2004: CooplS, DOA, and ODBASE. SpringerBedin Heidelberg, 492-508,2004. 被引量:1
  • 7Chen W, Fong S. Social Network Collaborative Filtering Frame- work and Online Trust Factors: a Case Study on FacebookE C]. 2010 Fifth International Conference on Digital Information Man- agement (ICDIM) ,266-273,2010. 被引量:1
  • 8蔡浩,贾宇波,黄成伟.结介用户信任供型的协同过滤推荐方法研究[J].计算机工程与直用,46(35):148-151,2010. 被引量:1
  • 9R Zheng, F Provost,A Ghose. Social Network Collaborative Fil- tering: Preliminary Results! C j. Proceedings of the Sixth Work- shop on eBusiness (WEB2007) , 2007. 被引量:1
  • 10Pham M C,Cao Y, Klamma R, et al. A Clustering Approach for Collaborative Filtering Recommendation Using Social Network Analysis[ ] ]. Journal of Universai Computer Science, 20t I, 17 (4) : 583-604. 被引量:1

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部