期刊文献+

基于云计算的“智慧漳州”关键问题及模型构建 被引量:3

Framework and Key Problems of Zhangzhou Smart City Based on Cloud Computing
下载PDF
导出
摘要 智慧城市是新型城市的发展模式。以云计算为核心技术,采用调查分析和计算机智能方法,解决"智慧漳州"建设的以下关键问题:促进智慧城市发展大环境的创设,特别是政策法规体系的完善;云计算等引领技术和应用方法的攻关;"智慧漳州"城市全景和框架模型的设计。为"智慧漳州"建设提供决策支持、解决方案、关键技术、体系架构和优化模型。 A smart city is a new trend in the development of modern cities. Zhangzhou City has launched the development ofsmart city for quite a while but the progress is not fast enough. This paper applies the survey analysis and computer intelligencemethod on cloud-computing platform, to solve such key issues for “Smart Zhangzhou” development as the smart city ecosystem,especially the government policies and regulations, the key driving technologies and methodologies for smart city based on cloudcomputing, then design the framework for “ Smart Zhangzhou”. This paper will provide some suggestions in decision support,solution, architecture, and optimization model and key technologies for "Smart Zhangzhou” development.
作者 黄河清
出处 《龙岩学院学报》 2015年第3期96-100,共5页 Journal of Longyan University
基金 漳州市科技计划项目"基于网络的智能移动学习系统研发及示范课程的应用"(Z2010002) 福建广播电视大学科研课题"基于‘云计算’的开放大学智能移动学习平台研究"(KY14064)
关键词 智慧城市 云计算 物联网 决策支持 政策法规 框架模型 smart city cloud computing Internet of things decision support policies and regulations frames
  • 相关文献

参考文献12

二级参考文献28

  • 1张萌.现代远程教育环境下电大系统师资管理体制创新问题初探[J].远程教育杂志,2004,22(6):49-51. 被引量:4
  • 2卢小丽,武春友,Holly Donohoe.生态旅游概念识别及其比较研究——对中外40个生态旅游概念的定量分析[J].旅游学刊,2006,21(2):56-61. 被引量:73
  • 3Kenned3 J, Eberhart R, C. Particle Swarm Optinlization[C]. Proceeding of IEEE International Conference on NeuralNetworks, 1995, 1942-1948. 被引量:1
  • 4Bergh F V D, Engelbrecht A. Particle Swarm Weight Initialization in Multi--layer Perception Artificial Neural Nelworks[J]. Development and Practice of Artificial Intelligence Techniques, 1999, 41-45. 被引量:1
  • 5Clerc M, Kennedy J. The Particle Swarm--Explosion, Stability, and Convergence in a Multidimensional Complex Space[J].IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73. 被引量:1
  • 6Ching J L, Chao T T, Pin L. A Discrete Version of Particle Swarm Optimization for Flowshop Scheduling Problems[J]. Computers & Operations Research, 2005. 被引量:1
  • 7Elizabeth F, Gouvea G, Marco C G.Partiele Swarm for tile Traveling Salesman Problem[J]. Springer-Verlag, 2006, 99-110. 被引量:1
  • 8Hong Z, Heng L, Tam C M. Particle Swarm Optimization for Resource--Constrained Project Schcduling[J]. International Journal of Project Management, 2006, 83-92. 被引量:1
  • 9Shi Y, Eberharl R C. A Modified Particle Swarm Optimiser[J]. Proceedings of tile IEEE International Conference on Evolutionary Computation, 1998, 69-73. 被引量:1
  • 10Shi Y, Eberhart, R C. Parameter Selection in Particle Swarm Optimization[J]. Evohltionary Programming Ⅶ. Lecture Notes in Computer Science, Vol. 1447, 1998, 591-600. 被引量:1

共引文献12

同被引文献9

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部