期刊文献+

基于抛物线插值的分数时延估计算法 被引量:6

Fractional delay estimation algorithm based on parabolic interpolation method
下载PDF
导出
摘要 时延估计技术在通信、雷达、声呐、定位、盲信号分离、超声波测距、生物医学工程等许多领域都有着广泛的应用,这些系统的精度与时延估计的精度息息相关。但时延精度受限于采样间隔,不可避免会引入分数倍时延。在众多分数时延估计算法中,三点插值法是一种非常简单高效的方法。针对基于三点插值的分数时延算法估计精度受限问题,提出基于五点平滑的三点插值法,提高分数时延估计精度;该方法利用相关峰及相关峰前后两点,对相关峰进行五点平滑后,再进行二次抛物线插值来估计分数时延。仿真结果表明,文章所提改进算法的分数时延估计误差优于传统三点抛物线插值法,验证了该方法的有效性。 Delay estimation algorithm is widely used in many fields, such as telecommunication, Radar, Sonar, navigation, blind sou- rce separation, ultrasonic ranging, biological signal processing, which system performance is highly related to delay estimation preci- sion. Due to limited sampling rate, the delay of these systems includes integer delay and fractional delay. Among the various fractional delay algorithms, parabolic interpolation based method is a very simple and frequently-used, but have limited precision owing to only use 3-point information. Aim to the limited precision problem of traditional parabolic interpolation based method, a modified 5-point smoothing and parabolic interpolation based fractional delay estimation method is proposed. Simulation results show that the fractional delay estimation error of our proposed method is superior to traditional parabolic interpolation based method.
出处 《信息通信》 2015年第5期285-287,共3页 Information & Communications
基金 广东省战略性新兴产业核心技术攻关项目(No.2012A010701013)
关键词 分数时延估计 抛物线插值 五点平滑 fractional delay estimation parabolic interpolation 5-point data smoothing
  • 相关文献

参考文献14

  • 1C.H.Knapp and G.C.Cater,The generalized correlation method for estimation of time delay[J] .IEEE Trans.ASSP,1976,24(4):320-327. 被引量:1
  • 2A.G.Piersol.Time delay estimation using phase data[J] .IEEE Trans.ASSP,1981,29:471-477. 被引量:1
  • 3赵真,侯自强.广义相位谱延时估计[J].声学学报,1985(7):202-203. 被引量:2
  • 4杨德森,时洁,刘伯胜.基于倒谱分析的水声信号被动定位时延估计算法研究[J].系统仿真学报,2009,21(2):610-612. 被引量:9
  • 5Ching P C,Chan Y T.Adaptive Time Delay Estimation with Constraints[J] .IEEE Trans on Acoustics,Speech and Signal Processing,1988,36(4):599-602. 被引量:1
  • 6So H C,Ching P C,Chan Y T.A New Algorithm for Explicit Adaptation of Time Delay[J] .IEEE Trans on Signal Processing,1994,42(7):1816-1820. 被引量:1
  • 7Liu You-Jiang,Lu Bin,Cao Tao,On the Robustness of Look-Up Table Digital Predistortion in the Presence of Loop Delay Error[J] .IEEE Transactions on Circuits and Systems,2012,59(10):2432-2442. 被引量:1
  • 8Took,C.C.Fractional Delay Estimation for Blind Source Separation and Localization of Temporomandibular Joint Sounds[J] .Biomedical Engineering,IEEE,2008,55(3):949-956. 被引量:1
  • 9H.C.So.Adaptive TDOA estimation in presence of impulsive noise[J] .Electronics Letters,1998,34(15):1455-1456. 被引量:1
  • 10Dooley S R and Nandi A K.Adaptive sub-sample time delay estimation using Lagrange interpolators[J] .IEEE Trams.on Signal Processing Letter,1999,6(3):65-67. 被引量:1

二级参考文献16

共引文献46

同被引文献30

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部