期刊文献+

基于蚁群粒子群混合算法的K均值聚类优化算法研究 被引量:2

Research on K Means Optimization Algorithm Based on Hybrid Optimization Algorithm of Ant colony and Particle Swarm
下载PDF
导出
摘要 K均值聚类算法是一种经典的数据挖掘算法,但该算法存在对初始值敏感且容易陷入局部最优问题,一定程度上影响分类结果的准确性。通过分析蚁群算法和粒子群算法,将两者混合算法应用到K均值聚类算法,提出一种K均值聚类优化算法。仿真结果表明,该优化算法不易受到初始值取值的影响,且具有较强的全局寻优能力,可作为聚类分析的一种有效方法。 K means clustering algorithm is a classic data mining method, but the algorithm is sensitive to initial value and easy to fall into local optimum problem. The accuracy of the classification results are affected to a certain extent. Through the analysis of ant colony algorithm (ACA) and particle swanal algorithm (PSO), the hybrid algorithm is appfied to the K - means algorithm, we propose an improved K - means algorithm. The simulation results show that the improved algorithm is not easily affected by the initial value of the influence, and has the strong ability of global optimization. It is an effective method of cluster analysis.
出处 《数字技术与应用》 2015年第4期122-123,共2页 Digital Technology & Application
关键词 蚁群算法 粒子群算法 K均值聚类算法 ant colony algorithm particle swama algorithm K - means clustering algorithm
  • 相关文献

参考文献7

二级参考文献20

  • 1钱锋,徐麟文.知识发现中的聚类分析及其应用[J].杭州师范大学学报(自然科学版),2001,5(1):34-37. 被引量:16
  • 2何彬彬,方涛,郭达志.基于不确定性的空间聚类[J].计算机科学,2004,31(11):196-198. 被引量:8
  • 3王勇,董颖.基于智能蚂蚁算法的路由选择[J].长春工业大学学报,2005,26(1):45-48. 被引量:3
  • 4Shi Y. , Eberhart R. C. A modified particle swarm optimizer[C]. //Proceedings of the IEEE Congress on Evolutionary computation. Piscataway: IEEE Press, 1998 : 303-308. 被引量:1
  • 5Y. Shi, R. Eberhart. Empirical study of particle swarm optimization[C].//Evolutionary Computation,1999 ,CEC99. [S. l. ]: Proceedings of the 1999 Congress on, 1945-1950. 被引量:1
  • 6Zhang Yong-ling, Ma Long-hua, Zhang Li-yan, et al. On the convergence analysis and parameter selection in particle swarm optimization [C]. // Machine Learning and Cybernetics. [S. l.] : International Conference on, 2003: 1802-1807. 被引量:1
  • 7loan Cristian Trelea. The particle swarm optimization algorithm: Convergence analysis and paramer selection [C].//Information processing Letters, 2002:317-325. 被引量:1
  • 8Frans vanden Berth. An Analysis of Particle Swarm Optimizers[D]: [Ph D Thesis]. [S. l. ]: Press by University of Pretoria,2001. 被引量:1
  • 9马庆国.管理统计[M].科学出版社,2002,8.. 被引量:39
  • 10HanJiawei KamberM.Data Mining Concepts and Techniques[M].北京:机械工业出版社,2001.. 被引量:13

共引文献130

同被引文献20

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部