期刊文献+

支持向量回归预测模型在材料性能预测中的应用 被引量:1

下载PDF
导出
摘要 与材料性能相关的预测模型,可以实现优化工艺,减少试验次数,节约研究时间和研究经费。本文介绍了支持向量回归原理,并以3种材料为例,介绍基于支持向量回归的预测模型对材料性能的预测。研究实例结果表明:支持向量回归预测模型具有良好的学习和泛化能力。研究者可以通过基于支持向量回归预测模型对各种材料的性能进行预测。
作者 唐江凌 黄健
出处 《科技视界》 2015年第17期42-43,61,共3页 Science & Technology Vision
基金 广西高校科研项目(YB 2014471)
  • 相关文献

参考文献7

  • 1邓乃扬,田英杰著..数据挖掘中的新方法 支持向量机[M].北京:科学出版社,2004:408.
  • 2Z.Lu,J.Sun.Non-Mercer hybrid kernel for linear programming support vector regression in nonlinear systems identification[J].Applied Soft Computing,2009,9(1):94-99. 被引量:1
  • 3K.W.Lau,Q.H.Wu.Local prediction of non-linear time series using support vector regression[J].Pattern Recognition,2008,41(5):1539-1547. 被引量:1
  • 4B.Schǒlkopf,A.J.Smola.Learning with kernels[M].1st edition.London:The MIT press,2002:25-60. 被引量:1
  • 5唐江凌,蔡从中,皇思洁,肖婷婷.Al-Cu-Mg-Ag合金强度性能的支持向量回归预测[J].航空材料学报,2012,32(5):92-96. 被引量:5
  • 6唐江凌,蔡从中,肖婷婷,皇思洁.支持向量回归在Zr-2合金晶粒尺寸预测中的应用[J].材料热处理学报,2013,34(2):180-184. 被引量:2
  • 7J.L.Tang C.Z.Cai,et al.Modeling and Predicting Tensile Strength of Tungsten Alloy by Using PSO-SVR[J].Advanced Materials Research,2012,455-456:1497-1503. 被引量:1

二级参考文献28

  • 1梁桂兆,李志良,周原,何留,周鹏.一种新多肽表征方法及支持向量机用于肽HPLC定量结构-保留建模预测[J].物理化学学报,2006,22(9):1052-1055. 被引量:3
  • 2刘文庆,雷鸣,耿迅,李强,周邦新.显微组织对Zr-Sn-Nb-Fe锆合金耐腐蚀性能的影响[J].材料热处理学报,2006,27(6):47-51. 被引量:16
  • 3丁益民,张婷婷,刘旭,陈念贻.CsF-RbF二元系相图[J].物理化学学报,2007,23(4):614-616. 被引量:1
  • 4Vapnik V. The Nature of Statistical Learning Theory [M]. New York : Springer, 1995. 被引量:1
  • 5Liong S Y, Sivapragasam C. Flood stage forecasting with support vector machines [ J ]. Journal of the American Water Resources Association,2002,38 (1) :173 -186. 被引量:1
  • 6Gavrish V V, Ganguli S B. Support vector machines as an efficient tool for high-dimensional data processing : Application to sub-storm forecasting [ J ]. Journal of Geophysical Research-Space Physics ,2001,106 ( A12 ) :29911 - 29914. 被引量:1
  • 7Hua S J, Ssn Z R. A novel method of protein secondary structure prediction with high segment overlap measure : support vector machine approach [ J ]. Journal of Molecular Biology,2001,308 (2) :397 - 407. 被引量:1
  • 8Cai C Z,Han L Y, Ji Z L, et al. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence [ J ]. Nucleic Acids Research,2003,31:3692 - 3697. 被引量:1
  • 9Cai C Z, Han L Y, Ji Z L, et al. Enzyme family classification by support vector machines[ J ]. Proteins,2004 55:66 -76. 被引量:1
  • 10Wen Y F,Cai C Z,Liu X H et al. Corrosion rate prediction of 3C steel under different seawater environment based on support vector regression [J]. Corrosion Science, 2009,51 ( 2 ) : 349 - 355. 被引量:1

共引文献5

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部