期刊文献+

上证380高频指数数据已实现GARCH(1,2)模型的风险测量 被引量:5

Measurement of Risk Based on Realized GARCH(1,2) Model with Different Residual
下载PDF
导出
摘要 针对高频金融数据收益率序列的厚尾和偏斜性,建立了偏t误差分布假设下的R-GARCH(1,2)模型,对上证380指数5 min频率的高频数据进行了Va R预测,并与经典的正态分布和t分布误差假设下的R-GARCH(1,2)模型的预测精度进行了对比分析。结果表明,误差项服从偏t分布的R-GARCH(1,2)模型能够有效识别上证380指数收益率序列的分布特征,并且能够精确地测量其收益风险。 We built the realized GARCH( 1,2) model with skewed student' s t distribution to forecast VaR of Shanghai Stock Exchange 380 index for the high-frequency financial data with a fat tail and a- symmetry. The model with normal distribution and student' s t distribution was used for comparison. The empirical results show that the realized GARCH model with the skewed student' s t distribution can identify the characteristics of the return series of Shanghai Stock Exchange 380 index and measure the risk of Shanghai Stock Exchange 380 index more accurately.
出处 《重庆理工大学学报(自然科学)》 CAS 2015年第5期137-141,共5页 Journal of Chongqing University of Technology:Natural Science
基金 重庆市自然科学基金资助项目(cstc2012jj A00018) 重庆市教委科学技术研究项目(KJ130810) 重庆市高等教育教学改革研究项目(1203053)
关键词 高频金融数据 已实现GARCH VAR 偏T分布 厚尾特征 偏斜性 high-frequency data realized GARCH VaR skewed student' s t distribution fat tail asymmetry
  • 相关文献

参考文献12

  • 1Jorion P. Risk2: Measuring the Risk in Value at Risk [J]. Financial Analysts Journal, 1996,52(6) :47-56. 被引量:1
  • 2Ruey S T. Analysis of Financial Time Series [ M ]. Third Edition. Canada: Wiley-Interscience ,2010. 被引量:1
  • 3Engle R F. Autoregressive conditional heteroskedasticity with estimates of the variance of U. K. Inflation [ J ]. Econometrica, 1982,50: 987-1007. 被引量:1
  • 4Bollerslev T. Generalized Autoregressive Conditional Het-eroskedasticity [ J ]. Journal of Econometrics, 1986, 31 : 307 -327. 被引量:1
  • 5Bangzheng Zhang, Yu Wei, Jiang Yu, et al. Forecasting Vail and ES of stock index portfolio : A Vine copula meth- od [ J ]. Statistical Mechanics and its Applications, 2014, 416:112-124. 被引量:1
  • 6王理同,王晓叶,原俊青,周明华.基于半参数EGARCH模型的VaR和CVaR度量与实证研究[J].数理统计与管理,2014,33(4):655-659. 被引量:8
  • 7赵晓玲,陈雪蓉,周勇.金融风暴中基于非参估计VaR和ES方法的风险度量[J].数理统计与管理,2012,31(3):381-388. 被引量:14
  • 8Shephard N, Shepphard K. Realising the future:Forecas- ting with high frequency based volatility (HEAVY) mod- els [ J]. Journal of Applied Econometrics, 2010, 25: 197-231. 被引量:1
  • 9Hensen P R,Zhuo Huang,Shek H H. Realized GARCH: A joint model of returns and realized measures of volatili- ty [ J ]. Journal of Applied Econometrics, 2012, 27: 877 -906. 被引量:1
  • 10Fernandez C M S. On Bayesian Modeling of Fat Tails and Skewness[ J]. Journal of the American Statistical Associ- ation, 1998,441 (93) :359-371. 被引量:1

二级参考文献24

  • 1王树娟,黄渝祥.基于GARCH-CVaR模型的我国股票市场风险分析[J].同济大学学报(自然科学版),2005,33(2):260-263. 被引量:21
  • 2崔志国.期权风险的Es度量[D].南京航空航天大学硕士学位论文,2006. 被引量:1
  • 3Artzner P, Delbaen F Eber J, Heath D. Coherent Measures of Risk[J]. Mathematical Finance, 1999,9: 203-228. 被引量:1
  • 4Frey R, McNeil A. VaR and Expected Shortfall in Portfolios of Dependent Credit Risks: Conceptual and Practical Insights[J]. Journal of Banking &: Finance, 2002, 26: 1317-1334. 被引量:1
  • 5Acerbi C, Nordio C, Sirtori C. Expected Shortfall as a Tool for Financial Risk Management[R]. Working paper, 2001. http://www.gloriamundi.org/var/wps.html. 被引量:1
  • 6Acerbi C, Tasche D. On the Coherence of Expected Shortfall[J]. Banking and Finance, 2002, 26: 1487-1503. 被引量:1
  • 7Embrechts P, Klueppelberg C, Mikosch T. Modeling Extremal Events for Insurance and Finance[M]. Berlin: Springer, 1997. 被引量:1
  • 8Scaillet O. Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall[J]. Mathemat- ical Finance, 2004, 14: 115-129. 被引量:1
  • 9Cai Z, Wang X. Nonparametric estimation of conditional VaR and expected shortfall[J]. Journal of Econometrics, 2008, 147: 120-130. 被引量:1
  • 10Chen S. Nonparametric Estimation of Expected Shortfall[J]. Journal of Financial Econometrics, 2008, 6: 87-107. 被引量:1

共引文献19

同被引文献20

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部