期刊文献+

基于MATLAB的连续信号的采样与重构仿真分析 被引量:1

Simulation and Analysis of Continuous Signal Sampling and Reconstruction Based on MATLAB
下载PDF
导出
摘要 针对连续信号的采样与重构问题,利用MATLAB仿真软件平台,仿真不同条件下连续信号的采样信号时域波形和采样后信号频谱、重构信号时域波形和重构后误差波形图。通过对采样周期对采样频谱叠加和信号重构精度的影响、以及信号被采样前后在频域的变化对比分析,得出在不同采样频率的条件下,对应采样信号的时域、频域特性以及重构信号与误差信号也随之产生变化,连续信号可以完全恢复过来。 To address the issue of continuous signal sampling and reconstruction, the continuous signal’ s sampling signal time domain waveform and signal spectrum after sampling, the reconstruction signal time domain waveform and the error waveform after reconstruction are simulated under different conditions using the MATLAB simulation software platform. Through an analysis on the influence of sampling period on the sampling spectral overlay and signal reconstruction accuracy,and through a comparison between the signals before and after sampling in frequency domain, it is concluded that under different sampling frequencies, the corresponding sampling signal’s time domain,frequency domain characteristics,and the reconstruction signal and the error signal also vary,and the continuous signal can be completely recovered.
作者 程建峰
出处 《无线电工程》 2015年第6期35-37,共3页 Radio Engineering
基金 甘肃工业职业技术学院项目(Gzy2011-27)
关键词 MATLAB 信号采样 频谱叠加 信号重构 MATLAB MATLAB signal sampling spectrum overlay signal reconstruction
  • 相关文献

参考文献10

二级参考文献62

  • 1赵冰,罗丰,吴顺君.相位编码信号的谱相关分析与调制参数估计[J].雷达与对抗,2005,25(3):34-37. 被引量:7
  • 2邢士勇,金海薇,郑海起,唐力伟.基于改进局部投影算法的非线性时间序列降噪[J].军械工程学院学报,2007,19(2):41-43. 被引量:6
  • 3曾庆勇 等.微弱信号检测[M].杭州:浙江大学出版社,1992.. 被引量:3
  • 4CANDES E. Compressive sampling[J]. Int. Congress of Mathematics ,2006, 3 : 1433-1452. 被引量:1
  • 5CANDI~S E J, ROMBERG J. Sparsity and incoherence in compressive sampling [ J ]. Inverse Problems, 2007, 23 (3) : 969-985. 被引量:1
  • 6CANDES E J, M WAKIN B, BOYD S P. Enhancing sparsity by reweighted L1 minimization [ J ]. The Journal of Fourier Analysis and Applications, Special Issue on Sparsity,2008,14(5 ) :877-905. 被引量:1
  • 7DONOHO D. Compressed sensing [ J ]. IEEE Trans. on Information, Theory,2006, 52(4) : 1289-1306. 被引量:1
  • 8AKAYA M A, TAROKH V. A frame construction and a universal distortion bound for sparse representations[ J].IEEE Trans. Sig. Proc ,2008,56:2443-2550. 被引量:1
  • 9BOUFOUNOS P, BARANIUK R, Quantization of sparse representations[ R]. Rice ECE Department Technical Re- port TREE 0701-Summary appears in Data Compression Conference (DCC) ,Snowbird, Utah,2007. 被引量:1
  • 10CANDES E J. The restricted isometry property and its im- plications for eompressed sensing [ J ]. C. R. Math. Aead. Sei. Paris, 2008,346(9-10):589-592. 被引量:1

共引文献64

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部