期刊文献+

基于低秩评分的非监督特征选择算法

Unsupervised feature selection based on low-rank score
下载PDF
导出
摘要 为将数据的全局结构信息引入特征选择中,提升特征评分机制的有效性,提出一种基于低秩评分的非监督特征选择算法。利用"干净"字典约束的低秩表示模型,获得权值矩阵,该权值矩阵能够揭示数据全局结构信息,具有一定的鉴别能力,将其引入拉普拉斯评分机制,构建低秩评分机制,用于数据的特征选择。在不同的数据库上进行聚类和分类实验,实验结果表明,同传统的特征选择算法相比,该算法的性能更优。 To integrate global structure information into feature selection and improve the effectiveness of feature selection mechanism , an unsupervised feature selection algorithm based on low‐rank score (LRS) was presented .The low‐rank representation model with“cleanly”dictionary constraint was constructed to gain a weight matrix that with the capacities of capturing the global struc‐ture information ,identifying and expressing the data information in it .The weight matrix was introduced into the Laplacian score ,and the low‐lank score for feature selection was studied .Experimental results of data clustering and classification on public dataset verify the effectiveness of the proposed method ,which also shows that it outperforms state‐of‐art feature selection approaches .
出处 《计算机工程与设计》 北大核心 2015年第6期1487-1493,共7页 Computer Engineering and Design
基金 国家自然科学基金项目(51365017 61305019) 江西省科技厅青年科学基金项目(20132bab211032)
关键词 低秩表示 数据结构信息 权值矩阵 低秩评分 特征选择 low-rank representation data structure information weight matrix low-rank score feature selection
  • 相关文献

参考文献13

  • 1Gu Q, Li Z, Han J. Generalized fisher score {or feature selec- tion [C] //Proceedings of the International Conference on Un- certainty in Articial Intelligence, 2011. 被引量:1
  • 2Zhang D, Chen S, Zhou Z H. Constraint score: A new filter method for feature selection with pairwise constraints [J]. Pat- tern Recognition, 2008, 41 (5): 1440-1451. 被引量:1
  • 3苏雅茹,王儒敬,成鹏.高维数据的维数约简算法研究[D].中国科技大学,2012. 被引量:3
  • 4Liu G, I.in Z, Yan S, et al. Robust recovery of subspace struetures by low-rank representation [J]. Pattern Analysis and Machine Intelligence, 2012, 35 (1): 172-184. 被引量:1
  • 5Shen X, Wu Y. A unified approach to salient object detection via low rank matrix recovery [C] //IEEE Conference on Com- puter Vision and Pattern Recognition. IEEE, 2012: 853-860. 被引量:1
  • 6Zhang N, Yang J. I.ow-rank representation based discrimina- tive projection for robust feature extraction [J]. Neurocompu- ting,2013, 111: 13-20. 被引量:1
  • 7Zhuang L, Gao H, Huang J, et al. Semisupervised classifica- tion via low rank graph [C] //Sixth International Conference on Image and Graphics. 1EEE, 2011: 511-516. 被引量:1
  • 8Cands E J, Li X, Ma Y, et al. Robust principal component analysis? [J]. Journal of the ACM, 2011, 58 (3): 1-11. 被引量:1
  • 9Recht B, Fazel M, Parrilo P A. Guaranteed minimumrank so- lutions of linear matrix equations via nuclear norm minimization [J]. SIAM Review, 2010, 52 (3): 471-501. 被引量:1
  • 10Xu H, Caramanis C, Sanghavi S. Robust PCA via outlier pursuit [J]. Systems Advances in Neural Information Pro- cessingSystems, 2010, 23: 2496-2504. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部