期刊文献+

RMC程序敏感性分析功能的并行策略与验证 被引量:3

Parallel Strategies and Verification of Sensitivity Analysis Function of RMC Code
原文传递
导出
摘要 针对堆用蒙特卡罗程序(RMC)中的有效增殖系数(keff)敏感性分析功能,为提高计算效率并降低内存占用,在RMC中实现了分别基于下一代裂变中子数以及中子产生率的伴随注量率估计方法的2种并行策略,并使用无限均匀介质多群算例和连续能量算例对该功能进行验证。结果表明,2种并行策略所求得的敏感性系数均与解析解、蒙特卡罗粒子输运程序(MCNP6)的计算结果吻合良好,计算速度为MCNP6的3倍左右,统计不同核素的总截面敏感性系数的品质因子为MCNP6的4~8倍左右。 In order to improve the computational efficiency and reduce the memory usage of the function in the Reactor Monte Carlo code RMC to compute the effective multiplication factor (keff) sensitivity coefficients with regard to nuclear data, two parallel strategies which are based on two ways to estimate the adjoint flux, namely, the next generation neutron number estimator and the neutron production rate estimator, are implemented in RMC. A multi-group infinite-medium test and a continuous-energy test are used to verify the new strategies. Results show that the sensitivity coefficients computed by the two parallel strategies agree well with the analytic solutions and those computed by MCNP6. Furthermore, the new strategies run 3 times as fast as MCNP6 and the figure of merits of the new strategies to compute the sensitivity coefficients to total cross section of different isotopes are 4 to 8 times as high as MCNP6.
出处 《核动力工程》 EI CAS CSCD 北大核心 2015年第3期152-156,共5页 Nuclear Power Engineering
基金 国家自然科学基金资助项目(11475098) 核反应堆系统设计技术重点实验室资助
关键词 敏感性分析 反复裂变几率法 并行 RMC Sensitivity analysis, Iterative fission probability method, Parallelism, RMC
  • 相关文献

参考文献9

  • 1Rearden B T. TSUNAMI-3D: Control module for three-dimensional cross-section sensitivity and uncer- tainty analysis for criticality[R]. ORNL/TM-2005/39. Version 6, Oak Ridge National Laboratory, 2009. 被引量:1
  • 2Kiedrowski B C, Brown F B. Adjoint-weighting for critical systems with continuous energy monte carlo[C]. 2009 Nuclear Criticality Safety Division Top. Mtg. on Realism, Robustness, and the Nuclear Renaissance, Richland, Washington, USA, 2009. 被引量:1
  • 3Kan Wang, Zeguang Li, Ding She, et aI. RMC - A monte carlo code for reactor core analysis[C]. Joint international conference on supercomputing in nuclear applications and Monte Carlo 2013 (SNA + MC 2013), Paris, France, 2013. 被引量:1
  • 4Yishu Qiu, Kan Wang, Jiankai Yu. Development of sensitivity analysis capability in RMC code[C]. Transactions of the American Nuclear Society, Anaheim,CA, 2014. 被引量:1
  • 5Nauchi Y, Kameyama T. Development of calculation technique for iterated fission probability and reactor kinetic parameters using continuous-energy monte carlo method[J]. Journal of Nuclear Science Technology, 2010, 47(11): 977-990. 被引量:1
  • 6Shim H J, Kim C H. Adjoint sensitivity and uncertainty analyses in monte carlo forward calculations[J]. Journal of nuclear science and technology, 2011, 48(11): 1453-1461. 被引量:1
  • 7Kiedrowski B C, Brown F B. Adjoint-based k-eigenvalue sensitivity coefficients to nuclear data using continuous-energy monte carlo[J]. Nuclear Science and Engineering, 2013, 174: 227-244. 被引量:1
  • 8Perfetti C M, Rearden B T. Continuous-energy eigenvalue sensitivity coefficient calculations in TSUNAMI-3D[C]. M&C 2013, Sun Valley, Idaho, 2013. 被引量:1
  • 9Ivanova T, Laville C, Dyrda J, et al. OECD/NEA Expert group on uncertainty analysis for criticality safety assessment: results of benchmark on sensitivity calculation (Phase IlI) [C]. PHYSOR 2012-Advances in Reactor Physics, Knoxville, TN, USA, 2012. 被引量:1

同被引文献29

  • 1杨文,田兆斐,陈广亮.基于确定性采样的不确定性分析[J].核动力工程,2020(S01):42-45. 被引量:2
  • 2郭海兵,李润东,牛伟力.临界外推中对控制棒价值非线性的修正[J].原子能科学技术,2013,47(1):101-104. 被引量:3
  • 3党耀国,刘恩峰,王正新,等.灰色预测与决策模型研究.北京:科学出版社,2009. 被引量:2
  • 4Bosman P. On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Trans. on Evolutionary Computation, 2012, 16(1): 51-69. 被引量:1
  • 5Zhou AM, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang QF. Multi obj ective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 2011, 1 (1): 32-49. 被引量:1
  • 6Coello CAC, Lamont GB. Applications of Multi-Objective Evolutionary Algorithms. Singapore: World Scientific Publisher, 2004. 被引量:1
  • 7Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation, 2002, 6(2): 182-197. 被引量:1
  • 8Murata T, Ishibuchi H. MOGA: Multi-objective genetic algorithms. Proc. of the 1995 IEEE International Conference on Evolutionary Computation. 1995. 被引量:1
  • 9李俊峰,戴文战.基于遗传算法和灰色关联度的多目标问题求解方法研究.第25届中国控制会议.2006.557—560. 被引量:1
  • 10Liu H, Zhang QS, Yao LG. Multi-objective particle swarm optimization algorithm based on grey relational analysis with entropy weight. The Journal of Grey System, 2010, 22: 265'--274. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部