期刊文献+

熔融二次热处理优化制备近红外钠硼铝硅酸盐PbSe量子点荧光玻璃 被引量:4

Near-Infrared PbSe Quantum Dots-Doped Sodium-Aluminum-Borosilicate Silicate Glass Prepared Optimally by Melting Method of Two-Step Heat Treatment
原文传递
导出
摘要 采用高温熔融法,经过两步退火热处理,在钠硼铝硅酸盐玻璃基底中成功合成了晶粒尺寸为3.63~4.33 nm、掺杂体积分数为2%的Pb Se量子点。用高温差热分析仪确定了最佳的热处理温度,用X射线衍射仪和透射电镜分析了玻璃中Pb Se量子点的结晶、尺寸和粒子分布情况。用分光光度仪和荧光光谱仪,观测了量子点玻璃的吸收谱和荧光发射谱。结果表明,第一次热处理时间在3~5 h之间,温度为500°C,玻璃才有荧光辐射,其辐射峰的半峰全宽为200 nm,峰值波长位于1220~1279 nm。第二次热处理的最佳时间为10 h,温度为540°C。给出了量子点尺寸关于第一次热处理时间的经验公式。提供的制备Pb Se量子点玻璃的方法和工艺数据,将为量子点玻璃拉制成光纤,制成高增益或宽带宽的新型光纤提供依据。 Pb Se quantum dots(QDs) in the sodium-aluminum-borosilicate silicate glass are successfully prepared by using a melting method of two-step heat treatment. The size of obtained QDs distributes within3.63~4.33 nm and with the doped volume ratio of 2% in the glass. The optimal heat treatment temperature is determined by using a differential thermal analysis. The crystallization, particle size and distribution of the QDs in the glass are observed by X-ray diffractometer and transmission electron microscopy. The absorption and photoluminescence(PL) spectra of the QDs are also measured by ultraviolet(UV)-visible-near infrared(NIR)spectrophotometer and fluorescence spectrometer, respectively. There is evidence to show that only when the first heat-treatment time is between 3~5 h and the temperature is 500 °C, the glass has PL emission, ranging in1220~1279 nm and with full width at half maximum(FWHM) of 200 nm. For the second heat treatment, the optimal time and temperature are 10 h and 540 °C, respectively. An empirical formula is given for the Pb Se QD size depending on the first heat treatment time. The method of Pb Se QD doped glass can help to form QD doped fiber devices with high gain in the future.
出处 《光学学报》 EI CAS CSCD 北大核心 2015年第5期272-278,共7页 Acta Optica Sinica
基金 国家自然科学基金(60777023 61274124)
关键词 材料 PbSe量子点玻璃 熔融法两步退火热处理 吸收谱 光致发光谱 光纤材料 materials Pb Se quantum dot doped glass two-step melting-heat treatment absorption spectrum photoluminescence spectrum fiber material
  • 相关文献

参考文献15

  • 1Medintz I L, Uyeda H T, Goldman E R, et al.. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Material,2005, 4(6): 435-446. 被引量:1
  • 2Schaller R D, Sykora M, Pietryga J M, et al.. Seven excitons at a cost of one: Redefining the limits for conversion efficiency of photons into charge carriers[J]. Nano Lett, 2006, 6(3): 424-429. 被引量:1
  • 3Borelli N F, Smith D W. Quantum confinement of PbS Microcrystals in Glass[J]. J Non Cryst Solids, 1994, 180(1): 25-31. 被引量:1
  • 4Joshi S, Sen S, Ocampo P C. Nucleation and growth kinetics of PbS quantum sots in oxide glass: Spectroscopic and microscopic studies in the dilute range[J]. Phys Chem C, 2007, 111 (11): 4105-4110. 被引量:1
  • 5Liu C, Heo J, Zhang X H, et al.. Photoluminescence of PbS quantum dots embedded in glasses[J]. J Non Cryst Solids, 2008, 354(2- 9): 618-623. 被引量:1
  • 6Loiko P A, Rachkovskaya G E, Zacharevich G B, et al.. Optical properties of novel PbS and PbSe quantum-dot-doped alumino- alkali-silicate glasses[J]. J Non Cryst Solids, 2012, 358(15): 1840-1845. 被引量:1
  • 7Chang J, Liu C, Heo J. Optical properties of PbSe quantum dots doped in borosilicate glass[J]. J Non Crys Solids, 2009, 355(37-42): 1897-1899. 被引量:1
  • 8Wageh S, Badr M H, Khalil M H, et al.. Strong confinement of PbSe nanocrystalsin phosphate glass[J]. Physica E, 2009, 41(7): 1157-1163. 被引量:1
  • 9Kannan P, Choudhary A, Mills B, et al.. Growth of PbSe quantum dots within high-index lead-phosphate glass for infrared saturable absorbers[J]. J Am Ceram Soe, 2013, 96(1): 197-200. 被引量:1
  • 10江慧绿,程成,马德伟.PbSe量子点掺杂玻璃的制备及表征[J].光电子.激光,2011,22(6):872-875. 被引量:5

二级参考文献21

共引文献12

同被引文献32

  • 1李亮,雷小华,任林娇,冯永安.基质对Tb3+单掺荧光玻璃发光性质的影响[J].发光学报,2014,35(4):420-424. 被引量:6
  • 2X Y Cheng, S B Lowe, P J Reece, et al.. Colloidal silicon quantum dots: from preparation to the modification of self-assembled monolayers (SAMs) for bio-applications[J]. Chem Soc Rev, 2014, 43(8): 2680-2700. 被引量:1
  • 3D A Chen, F Zhao, H Qi, et al.. Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor[J]. Chem Mater, 2010, 22(4): 1437-1444. 被引量:1
  • 4T Kummell, R Weigand, G Bacher, et al.. Single zero-dimensional excitons in CdSe/ZnSe nanostructures[J]. Appl Phys Lett, 1998, 73 (21): 3105-3107. 被引量:1
  • 5J S Tang, C F Li, M Gong, et al.. Direct observation of single InAs/GaAs quantum dot spectrum without mesa or mask[J]. Physica E, 2009, 41(5): 797-800. 被引量:1
  • 6B Zhang, Y T Shen, Y Y Feng, et al.. Bowl-shaped superstructures of CdSe nanocrystals with the narrow-sized distribution for a highperformance photoswitch[J]. Chem Phys Lett, 2015, 633: 76-81. 被引量:1
  • 7P Hawrylak, G A Narvaez, M Bayer, et al.. Excitonic absorption in a quantum dot[J]. Phys Rev Lett, 2000, 85(2): 389-392. 被引量:1
  • 8X G Peng, J Wickham, A P Alivisatos. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth:“focusing”of size distributions[J]. J Amer Chem Soc, 1998,120(21): 5343-5344. 被引量:1
  • 9W Y Wu, J N Schulman, T Y Hsu, et al.. Effect of size nonuniformity on the absorption spectrum of a semiconductor quantum dot system [J]. Appl Phys Lett, 1987, 51(10): 710-712. 被引量:1
  • 10D L Ferreira, J L A Alves. The effects of shape and size nonuniformity on the absorption spectrum of semiconductor quantum dots[J]. Nanotechnology, 2004, 15(8): 975-981. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部