期刊文献+

基于深度图像的指尖和掌心特征提取方法 被引量:6

Feature detection method of fingertip and palm based on depth image
下载PDF
导出
摘要 针对在其他肤色和重叠物干扰下手势分割出现偏差的问题,提出深度数据和骨骼追踪实现准确手势分割。结合凸缺陷的最小外接圆、平均值、最大内切圆三种不同的掌心提取方法来提高不同手势下掌心和掌心区域半径的精确度,通过提取出指尖弧并结合凸包来得到拟指尖集,再通过3步过滤来得到准确的指尖。实验中对6种手势进行了4种变换情况下的检验,其中翻转、平行、重叠的识别率都高于90%,倾斜和偏转分别超过70°、60°时准确度明显下降。实验结果表明了该方法在多种真实手势场景下具有较高的准确率。 To solve the gesture segmentation deviation problem under the interference of other skins and overlapping objects, a method of using depth data and skeleton tracking to segment gesture accurately was proposed. The minimum circumscribed circle, the average and the maximal inscribed circle of convexity defect, were combined to improve the detection of palm and the palm region's radius of various gesture. A fingertip candidate set was got through integrating the finger arc with convex hull, then real fingertips were obtained with three-step filtering. Six gestures have been tested in four transform cases, the recognition rate of flip, parallel, overlapping are all higher than 90% but the rate decreases obviously when tilting more than 70 degree and yawing more than 60 degree. The experimental results show that the accuracy of the proposed method is high in a variety of real scenes.
出处 《计算机应用》 CSCD 北大核心 2015年第6期1791-1794,1804,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61462038)
关键词 手势分割 凸缺陷 最小外接圆 掌心 指尖弧 凸包 gesture segmentation convexity defect minimum circumscribed circle palm fingertip arc convex hull
  • 相关文献

参考文献17

  • 1SUAREZ J,MURPHY R R.Hand gesture recognition with depth images:a review[C]//Proceedings of the 2012 IEEE RO-MAN.Piscataway:IEEE,2012:411-417. 被引量:1
  • 2MITRA S,ACHARYA T.Gesture recognition:a survey[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews,2007,37(3):311-324. 被引量:1
  • 3EROL A,BEBIS G,NICOLESCU M.Vision-based hand pose estimation:a review[J].Computer Vision and Image Understanding,2007,108(1/2):52-73. 被引量:1
  • 4MALASSISOTIS S,AIFANTI N,STRINTZIS M G.A gesture recognition system using 3D data[C]//TDPVT 2002:Proceedings of the First International Symposium on 3D Data Processing Visualization and Transmission.Piscataway:IEEE,2002:190-193. 被引量:1
  • 5KOLSCH M,TURK M.Robust hand detection[C]//AFGR 2004:Proceedings of the 2004 International Conference on Automatic Face and Gesture Recognition.Piscataway:IEEE,2004:614-619. 被引量:1
  • 6ONG E-J,BOWDEN R.A boosted classifier tree for hand shape detection[C]//AFGR 2004:Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition.Piscataway:IEEE,2004:889-894. 被引量:1
  • 7RAHEJA J L,CHAUDHARY A,SINGAL K.Tracking of fingertips and centers of palm using KINECT[C]//CIMSiM 2011:Proceedings of the 2011 Third International Conference on Computational Intelligence,Modelling and Simulation.Piscataway:IEEE,2011:248-252. 被引量:1
  • 8WANG X,WANG R,ZHOU F.Fingertips detection and hand tracking based on curve fitting[C]//CISP 2014:Proceedings of the 2014 7th International Congress on Image and Signal Processing.Piscataway:IEEE,2014:99-103. 被引量:1
  • 9曹雏清,李瑞峰,赵立军.基于深度图像技术的手势识别方法[J].计算机工程,2012,38(8):16-18. 被引量:60
  • 10李博男,林凡.基于曲率的指尖检测方法[J].南京航空航天大学学报,2012,44(4):587-591. 被引量:18

二级参考文献16

  • 1杨端端,金连文,尹俊勋.手指书写汉字识别系统中的指尖检测方法[J].华南理工大学学报(自然科学版),2007,35(1):58-63. 被引量:13
  • 2Kelly D,McDonald J,Markham C.A Person Independent System for Recognition of Hand Postures Used in Sign Language[J].Pattern Recognition Letters,2010,31(11):1359-1368. 被引量:1
  • 3Wang Chieh-Chih,Wang Ko-Chih.Hand Posture Recognition Using Adaboost with Sift for Human Robot Interaction[C]//Proc.of International Conference on Advanced Robotics.Jeju Island,Korea:[s.n.],2007. 被引量:1
  • 4Flasinski M,Myslinski S.On the Use of Graph Parsing for Recognition of Isolated Hand Postures of Polish Sign Language[J].Pattern Recognition,2010,43(6):2249-2264. 被引量:1
  • 5Witten I H,Frank E.Data Mining:Practical Machine Learning Tools and Techniques[M].Burlington,USA:Morgan Kaufmann Publishers,2005. 被引量:1
  • 6Wu Ying, Huang T S. Vision-based gesture recogni- tion: a review[J]. Lecture Notes in Computer Sci- ence, 1999,1739/1999: 103-115. 被引量:1
  • 7Weissmann J, Salomon R. Gesture recognition for virtual reality applications using data gloves and neu- ral networks [J]. International Joint Conference on Neural Networks (IJCNN' 99), 1999(3): 2043- 2046. 被引量:1
  • 8Iwai Y, Watanabe K, Yagi Y, et al. Gesture recog- nition using colored glove [J]. Proceedings of the 13th International Conference on Pattern Recogni- tion, 1996(1): 662-666. 被引量:1
  • 9Bretzner L, Laptev I, Lindeberg T. Hand gesture recognition using multi-scale colour features, hierar- chical models and particle filtering[-C]//Fifth IEEE International Conference on Automatic Face and Gesture Recognition (FGr 02). [S. 1. ] :IEEE, 2002 : 423-428. 被引量:1
  • 10Cui Y, Swets D, Weng J. Learning-based hand sign recognition using SFIOSLIF-M [C] ff International Workshop on Automatic Face and Gesture Recogni- tion. Zurieh:[s. n. ], 1995 : 201-206. 被引量:1

共引文献75

同被引文献58

  • 1王鼎,沈辉,娄海涛.一种基于H-CrCb颜色空间的肤色检测算法研究[J].计算机科学,2012,39(S2):223-226. 被引量:6
  • 2钱小燕,肖亮,吴慧中.快速风格迁移[J].计算机工程,2006,32(21):15-17. 被引量:15
  • 3CUI W, WANG W, LIU H. Robust hand tracking with refined CAMshift based on combination of depth and image features [C]// Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ: IEEE, 2012: 1355-1361. 被引量:1
  • 4KARPUSHIN M, VALENZISE G, DUFAUX F. Local visual features extraction from texture+depth content based on depth image analysis [C]// Proceedings of the 2014 IEEE International Conference on Image Processing. Piscataway, NJ: IEEE, 2014: 2809-2813. 被引量:1
  • 5LU C, JIA J, TANG C. Range-sample depth feature for action recognition [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2014: 772-779. 被引量:1
  • 6JALAL A, UDDIN M Z, KIM T S. Depth video-based human activity recognition system using translation and scaling invariant features for life logging at smart home [J]. IEEE transactions on consumer electronics, 2012, 58(3): 863-871. 被引量:1
  • 7LIU Y, LASANG P, SIEGEL V, et al. Geodesic invariant feature: a local descriptor in depth [J]. IEEE transactions on image processing, 2015, 24(1): 236-248. 被引量:1
  • 8DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2005: 886-893. 被引量:1
  • 9SPINELLO L, ARRAS K O. People detection in RGB-D data [C]// Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ: IEEE, 2011:3838-3843. 被引量:1
  • 10LIN Y, WEI S, FU L. Grasping unknown objects using depth gradient feature with eye-in-hand RGB-D sensor [C]// Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering. Piscataway, NJ: IEEE, 2014:1258-1263. 被引量:1

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部