摘要
环R中的元素a称为是惟一强π-rad clean的,如果存在惟一的幂等元e∈R使得a-e∈u(R),ea=ae且ean∈J(R),其中n是某个正整数。如果环中的每一个元素都是惟一强π-rad clean元,那么环称为是惟一强π-rad clean环。文中给出了惟一强π-rad clean元和阿贝尔的惟一强π-rad clean环的一些等价刻画。
An element a of a ring R is said to be uniquely strongly π-rad clean if there exists a unique idempotent e ∈ R such that a -e ∈ u(R) ,ea = ae and ea^n ∈ J(R) for some positive integer n. If every element is uniquely strongly or-tad clean, then R is called the uniquely strongly π-rad clean ring. In this paper, some characterizations of uniquely strongly π-rad clean elements and abelian uniquely strongly π- rad clean rings are given.
出处
《南京邮电大学学报(自然科学版)》
北大核心
2015年第3期123-126,共4页
Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金
国家自然科学基金(11226071)
南京邮电大学校科研基金(NY213183)资助项目