期刊文献+

一种基于逻辑的频繁序列模式挖掘算法 被引量:9

Logic-based Frequent Sequential Pattern Mining Algorithm
下载PDF
导出
摘要 传统的类Apriori频繁序列模式挖掘算法都是基于支持度框架理论,需要预先设定支持度阈值,而这通常需要较深的领域知识或大量的实践,因此目前仍没有一种很好的设定方法。同时,序列模式的挖掘结果往往数量很大且不易理解,可用性较低。针对上述问题,提出了一种基于逻辑的频繁序列模式挖掘算法即LFSPM算法,并首次在频繁序列模式挖掘算法中引入了逻辑的思想,通过逻辑规则过滤,大大优化了结果集。实验证明,该算法较好地解决了支持度设置问题及挖掘结果可理解性不高的问题。 Traditional Apriori-like sequential pattern mining algorithms are based on the theoretical framework of support, which need pre-set support threshold, but this often requires in-depth domain knowledge or a lot of practice. Consequently,there is still no good way to set it. Meanwhile, the results of sequential patterns are too large to understand and apply. To solve these problems,this paper presented a logic-based frequent sequential pattern mining algorithm LFSPM, and introduced the thought of logic into frequent pattern mining process for the first time. Through using logical rules to filter, it optimizes the result sets greatly. Experiments show good performance of the proposed approach to solve these problems.
出处 《计算机科学》 CSCD 北大核心 2015年第5期260-264,共5页 Computer Science
基金 浙江省自然科学基金(LY14F020018) 国家自然科学基金(61202204)资助
关键词 频繁序列模式 数据挖掘 逻辑 支持度阈值 Frequent sequential pattern,Data mining,Logic,Support threshold
  • 相关文献

参考文献15

  • 1Agrawal R,Srikant R.Mining sequential patterns[C]∥Procee-dings of the Eleventh International Conference on Data Enginee-ring,1995.IEEE,1995:3-14. 被引量:1
  • 2Yan X,Han J,Afshar R.CloSpan:Mining closed sequential patterns in large datasets[C]∥Proceedings of SIAM International Conference on Data Mining.2003:166-177. 被引量:1
  • 3Wang Jian-yong,Han Jia-wei.BIDE:efficient mining of frequent closed sequences[C]∥Proceeding of the 2004 International Conference on Data Engineering.Boston,2004:79-90. 被引量:1
  • 4童咏昕,张媛媛,袁玫,马世龙,余丹,赵莉.一种挖掘压缩序列模式的有效算法[J].计算机研究与发展,2010,47(1):72-80. 被引量:8
  • 5Chang L,Wang T,Yang D,et al.Seqstream:Mining closed sequential patterns over stream sliding windows[C]∥Eighth IEEE International Conference on Data Mining,2008(ICDM'08).IEEE,2008:83-92. 被引量:1
  • 6Luo C,Chung S M.A scalable algorithm for mining maximalfrequent sequences using a sample[J].Knowledge and Information Systems,2008,15(2):149-179. 被引量:1
  • 7Chedyeams R,Pascal P,Maguelonne T.Speed:mining maximal sequential patterns over data streams[C]∥Proceedings of the 3rd International IEEE Conference on Intelligent Systems.London:IEEE,2006:546-552. 被引量:1
  • 8Yan X,Cheng H,Han J,et al.Summarizing itemset patterns:a profile-based approach[C]∥Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Datamining.ACM,2005:314-323. 被引量:1
  • 9王涛.在有噪音的环境中挖掘序列模式精简基[J].华中科技大学学报(自然科学版),2006,34(6):36-38. 被引量:1
  • 10Kum H C,Pei J,Wang W,et al.ApproxMAP:Approximatemining of consensus sequential patterns[C]∥Third SIAM International Conference on Data Mining (SIAM-DM).2003:311-315. 被引量:1

二级参考文献33

  • 1宋世杰,胡华平,周嘉伟,金士尧.一种基于大项集重用的序列模式挖掘算法[J].计算机研究与发展,2006,43(1):68-74. 被引量:10
  • 2Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data Dallas,Texas,United States,2000:1-12. 被引量:1
  • 3Agrawal R,Srikant R.Mining sequential patterns[C]//11th International Conference on Data Engineering,Taipei,Taiwan,1995:3-14. 被引量:1
  • 4Ayres J,Flannick J,Gehrke J,et al.Sequential pattern mining using a bitmap representation[C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Edmonton,Alberta,Canada,2002:429-435. 被引量:1
  • 5Pasquier N,Bastide Y,Taouil R,et al.Discovering frequent closed itemsets for association rules[C]//Proceeding of the 7th International Conference on Database Theory London,UK,1999:398-416. 被引量:1
  • 6Wang J,Han J.BIDE:efficient mining of frequent closed sequences[C]//20'th International Conference on Data Engineering(ICDE'04),2004:79-90. 被引量:1
  • 7Yan X,Han J,Afshar R.CloSpan:mining closed sequential patterns in large datasets[C]//SDM'03,San Fransisco,CA,2003:176-184. 被引量:1
  • 8Calders T,Goethals B.Mining all non-derivable frequent itemsets[C]//Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery,2002:74-85. 被引量:1
  • 9Roberto J,Bayardo J.Efficiently mining long patterns from databases[J].Sigmod Rec,1998,27:85-93. 被引量:1
  • 10Kum H C,Pei J,Wang W,et al.ApproxMAP:approximate mining of consensus sequential patterns[C]//The 3rd SIAM International Conference on Data Mining,San Francisco,CA,2003:311-315. 被引量:1

共引文献7

同被引文献93

引证文献9

二级引证文献169

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部