摘要
利用参数空间法研究用PI^λ控制器实现时滞系统的闭环极点配置问题.复平面上的阻尼角扇形区域和相对稳定度区域(该两区域构成一个梯形区域)被映射到控制器参数平面,相应的控制器参数可以将闭环极点配置在梯形区域内,从而保证所要求的系统性能.仿真结果显示,对于适当选取的分数阶PI^λ控制器的参数,采用分数阶控制器可以取得比整数阶控制器更好的控制效果,从极点配置的角度揭示了分数阶控制器的优越性.
The pole placement with fractional-order PI^λ controllers for time-delay systems is discussed by using the parameter space approach. The damping ratio angular sector region and the relative stability region in complex plane, which form a trapezoid region in the left-half of the complex plane, are mapped into the controller parameters space. Thus, the corresponding controller parameters can place all the closed-loop poles in the specified trapezoid region, and guarantee the performances of the closed-loop systems. Simulation results show that for appropriately selected parameters of the fractional-order PIλ controller, better system performances can be achieved with the fractional-order controller than with the integer-order controller, and the superiority of fractional-order controllers is proved from the view point of the pole placement.
出处
《控制与决策》
EI
CSCD
北大核心
2015年第6期1131-1134,共4页
Control and Decision
关键词
极点配置
分数阶PI^λ控制器
参数空间法
时滞系统
pole placement
fractional-order PI^λ controllers
parameter space approach
time-delay systems