期刊文献+

圆形截面T型微反应器的优化设计 被引量:1

Optimal design for circular section T-shaped microreactor
原文传递
导出
摘要 对圆形截面T型微反应器进行优化设计,可以增强反应器内流体混合程度,进而提高反应产物收率。和矩形截面微反应器相比,圆形截面的微反应器内部压力各向均衡,有利于克服操作压力提高对微反应器壁面承压的影响。本研究开发了一个描述圆形截面T型微反应器流体流动状态的简化模型,通过层叠式假设边界条件描述反应通道入口处的强混合流动状态,进而计算微反应器内反应产物收率。依据此简化模型,本研究应用改进型模拟退火算法,用来设计具有最优反应器半径和最优入口管径中心差的的T型微反应器。优化问题的目标函数是最大反应产物收率,优化约束包括反应通道半径约束和操作压力约束。本研究利用gPROMS和Matlab的混合编程,利用改进型模拟退火算法,实现优化算法和简化模型的求解。优化求解的有效性通过一个平行串联反应在微反应器中的反应过程来验证,求解结果和CFD模型验证结果比较一致。 In this research, a simplified model is proposed to efficiently solve the optimal design problems of circular section T-shaped Microreactors (CTMR). Compared with rectangular section T-shaped Microreactors (RTMR), the pressure distribution of CTMR in each direction is same, therefore, the mechanical property of the mixing channel of CTMR is better than the RTMR. In the proposed model, the assuming lamellar boundary conditions arc used to describe the increasing mixing effect, and to calculate the reaction yield distribution in the mixing channel. Meanwhile, based on the simplified model, a simulated annealing algorithm is applied to design an optimal size of CTMR with a higher product yield and a lower operation pressure. The usefulness of the proposed model and the simulated annealing algorithm is demonstrated through a consecutive-parallel reaction. The reaction yield is maximized by manipulating the radius and the center distance of two inlets. The design result shows that the optimal CTMR can accurately predict the maximum yield distribution of the product along the mixing channel.
作者 王林 齐咏生
出处 《计算机与应用化学》 CAS 2015年第5期575-578,共4页 Computers and Applied Chemistry
基金 国家自然科学基金资助项目(21466026 61364009) 内蒙古自治区高校自然科学重点项目(NJZZ14054)
关键词 圆形截面T型微反应器 简化模型 优化设计 circular section T-shaped microreactor simplified model optimal design
  • 相关文献

参考文献8

  • 1Ehrfeld W, Hessel V and Loewe H. Microreactors-New Technology for Modem Chemistry. Weinheim: Wiley-VCH, 2000. 被引量:1
  • 2Nagaki A, Kim H and Yoshida J. Aryllithium compounds bearing alkoxycarbonyl groups: generation and reaction using a microflow system. Angew Chem Int Edit, 2008, 47(41):7833-7836. 被引量:1
  • 3Kockmann N, Kiefer T, Engler M and Woias P. Convective mixing and chemical reactions in microchannels with high flow rates. Sensors and Actuators. B-Chem, 2006, 117(2):496-508. 被引量:1
  • 4Kamath R S, Biegler L T and Grossman I E. An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization. Computers & Chemical Engineering, 2010, 34(12):2085-2096. 被引量:1
  • 5Hanke M and Li P. Simulated annealing for the optimization of batch distillation processes. Computers & Chemical Engineering, 2000, 24(1). 被引量:1
  • 6Wang L, Pu Z and Wen S. Optimal operation strategies for batch distillation by using a fast adaptive simulated annealing algorithm, WCICA2012, Beijing, July 6-8, 2012. 被引量:1
  • 7骆广生,王凯,吕阳成,王玉军,徐建鸿.微尺度下非均相反应的研究进展[J].化工学报,2013,64(1):165-172. 被引量:15
  • 8王林.基于简化模型的T型微反应器设计[J].计算机与应用化学,2012,29(7):859-862. 被引量:3

二级参考文献87

  • 1Ehrfeld W, Hessel V and Loewe H. Microreactors-New Technology for Modem Chemistry. Weinheim:Wiley-VCH, 2000. 被引量:1
  • 2Nagaki A, Kim H and Yoshida J. Aryllithium compounds bearing alkoxycarbonyl groups: generation and reaction using a microflow system. Angew Chem lnt Edit, 2008, 47(41):7833-7836. 被引量:1
  • 3Kockmann N, Kiefer T, Engler M and Woias P. Convective mixing and chemical reactions in microchannels with high flow rates. Sensors and Actuators B-Chem, 2006, 117(2):496-508. 被引量:1
  • 4Soleymani A, Kolehmainen E and Tureen I. Numerical and experimental investigations of liquid mixing in T-type micromixers, Chem Eng J, 2008, 135(S1):S219-S218. 被引量:1
  • 5Bothe D, Lojewski A and Warnecke H, Computational analysis of an instantaneous chemical reaction in a T-microreactor. AIChE J, 2010, 56(6):1406-1415. 被引量:1
  • 6Taylor R A, Penney W R and Vo H X. Scale-up method for fast competitive chemical reactions in pipeline mixers. Ind Eng Chem Res, 2005, 44(16):6095-6102. 被引量:1
  • 7Baldyga J, Bourne J R and Walker B. Non-isothermal micromixing in turbulent liquids: theory an experiment. Can J Chem Eng, 1998, 76(3):641-649. 被引量:1
  • 8HesseJ V,Lowe H. Microchemical engineering: components,plant concepts user acceptance ( I ) [ J ]. Chem. Eng.TechnoL , 2003, 26 (1): 13-24. 被引量:1
  • 9Hessel V, Lowe H. Microchemical engineering:components, plant concepts, user acceptance ( II ) [ J ].Chem. Eng. TechnoL,2003,26 (4) : 391-408. 被引量:1
  • 10Hessel V, Lowe H. Microchemical engineering:components, plant concepts, user acceptance ( III ) [J].Chem, Eng. TechnoL ? 2003,26 (5): 531-544. 被引量:1

共引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部