期刊文献+

固溶温度对Ti-1300合金组织与性能的影响 被引量:6

Effect of Solution Temperature on Microstructure and Properties of Ti-1300 Alloy
原文传递
导出
摘要 研究了Ti-1300合金经不同温度固溶处理和固溶+时效处理后的组织和性能。结果表明:Ti-1300合金在固溶处理后,随着固溶温度升高,合金的抗拉强度和屈服强度逐渐降低,断面收缩率先升高后降低,断后伸长率有所升高。Ti-1300合金在850℃固溶处理可获得最佳的综合性能。通过固溶和时效处理,Ti-1300合金硬度随着固溶温度的升高而增大。当固溶处理在相变点以下时,β相中时效析出次生αs相较粗大;而固溶处理在相变点以上时,β相中时效析出次生αs相较细小且均匀。 Microstructure and mechanical properties of Ti-1300 alloy were investigated after the solution treatment or the solution treatment followed by subsequent aging. The results show that the heat treatment process has a significant effect on the microstructure and mechanical properties of Ti-1300 alloy. The ultimate tensile strength and yield strength decrease with the increasing of solution temperature, but the elongation of Ti-1300 alloy presents an opposite changing tendency. Nevertheless, the reduction of area of Ti-1300 alloy firstly increases and then decreases. Ti-1300 alloy was solution treated at 850 oC to obtain the best combination of strength and ductility. It is found that the micro-hardness of Ti-1300 alloy increases with increasing of solution temperature under the same aging condition. Compared with solution treatment below the β transus temperature of Ti-1300 alloy, the second phase αs precipitates are finer and more uniform because of the incremental concentration of excess vacancy in the solution process above β transus temperature of Ti-1300 alloy.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2015年第5期1209-1213,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51401058) 陕西省重大科技成果转化引导专项(2012KTCG04-04) 科技创新团队项目(2012KCT-23)
关键词 固溶温度 Ti-1300合金 显微组织 力学性能 solution temperature Ti-1300 alloy microstructure mechanical properties
  • 相关文献

参考文献14

  • 1Ivasishin 0 M, Markovsky P, Matviychuk Y V. Journal of Alloys and Compounds[J], 2008, 457:296. 被引量:1
  • 2Bouyer R R. Materials Science and Engineering[J], 1996, A213: 103. 被引量:1
  • 3Karasevskaya O P, Ivasishin O M, Semiatin S Let al. Materials Science and Engineering[J], 2003, A354:121. 被引量:1
  • 4Christoph Leyens, Manfred Peters. Titanium and Titanium Alloys[M]. Weinheim: Wiley-Veh Verlag GmbH & Co. KGaA, 2003. 被引量:1
  • 5Zhao Yongqing(赵永庆),Hong Quan(洪权),Ge Peng(葛鹏).Metallograph of Titanium Alloy(钛合金的金相图谱)[M].Changsha:Central South University Press,2011. 被引量:1
  • 6Zhao Yinghui(赵映辉),Ge Peng(葛鹏),Zhao Yongqing(赵永庆)et al.稀有金属与材料工程[J],2009,38(1):46. 被引量:1
  • 7汶建宏,葛鹏,杨冠军,毛小南,周伟.热处理工艺对Ti-1300合金的组织和拉伸性能的影响[J].稀有金属材料与工程,2009,38(8):1490-1494. 被引量:13
  • 8Wan M P, Zhao Y Q, Zeng W D et al. Journal of Alloys and Compounds[J], 2015, 619:383. 被引量:1
  • 9Hu Gengxiang(胡赓祥),Cai Xun(蔡殉).Foundation of MaterialsScience(材料科学基础)[M].Shanghai:Shanghai Jiaotong University Press,2001. 被引量:1
  • 10Liu Zongchang(刘宗昌).Principle of Microstructure Transformation of Materials(材料组织结构转变原理)[M].Beijing:Metallurgical Industry Press,2006. 被引量:1

二级参考文献20

共引文献25

同被引文献55

  • 1Serp J, Allibert M, Benes O et al. Progress in Nuclear Energy[J], 2014, 77:308. 被引量:1
  • 2Waldrop M M. Nature[J], 2012, 492:26. 被引量:1
  • 3Uhlii J. Journal of Nuclear Materials[J], 2007, 360:6. 被引量:1
  • 4Ren W, Muralidharan G, Wilson D F et al. ASME 2011 Pressure Vessels and Piping Conference[C]. Baltimore, Pressure Vessels and Piping Division, 2011 : 725. 被引量:1
  • 5Swindeman R W. The Mechanical Properties of INOR-8[M]. Tenn: Oak Ridge National Lab, 1961:14. 被引量:1
  • 6Carlson Raymond G. Fatigue Studies of INOR-8[M]. Ohio: Battelle Memorial Inst, 1959:9. 被引量:1
  • 7Bhattacharyya D, Davis J, Drew Met al. Materials Characterization[J], 2015, 105:118. 被引量:1
  • 8Xu Z, Jiang L, Dong J et al. Journal of Alloys and Compounds[J], 2015, 620:197. 被引量:1
  • 9Xie Jun(谢君),Tian Sugui(田素贵),Zhou Xiaoming(周晓明)et al.稀有金属材料与工程[J],2012,41(10):447. 被引量:1
  • 10Liu T, Dong J, Wang Let al. Journal of Materials Science & Technology[J], 2015, 31(3): 269. 被引量:1

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部