摘要
针对高可靠应用需求,介绍一型双余度机电静压伺服机构试验样机,采用一台非对称式液压作动器及与其集成于一体的两套伺服电机泵驱动组件。重点分析了余度机电静压伺服机构故障隔离和重构技术方案,采用含M型工位的两位四通电磁换向阀实现故障通道的隔离与卸荷,提出故障工况下将剩余正常通道的位置误差比例增益加倍的控制律重构方法。理论分析和故障模拟试验数据表明,双余度机电静压伺服机构具备突出的可靠性设计优势和良好的故障容错能力,具有应用于载人航天运载火箭的价值。
For highly reliable applications,a dual redundancy electro-hydrostatic actuator(EHA)was introduced,where a non-symmetrical hydraulic actuator and two sets of servo motor driven pump were integrated into a monolithic structure.A technical approach to isolate faults and reconfigurate the system was introduced and analyzed.Two-position-four-way directional solenoid valves having M type positions were used to isolate the fault channel and to unload the corresponding pump.A control law was reconstructed that the position error gain in the remaining normal channel was doubled.Theoretical analysis and experimental simulations were conducted.It shows that redundant ElectroHydrostatic Actuators have the outstanding advantage for highly reliable designs and good fault tolerant performance,valuable to be applied to manned space launch vehicles.
出处
《载人航天》
CSCD
2015年第3期205-211,共7页
Manned Spaceflight
关键词
机电静压
双余度
故障隔离
重构
运载火箭
electro-hydrostatic actuator
dual-redundant
fault isolation
reconfiguration
launch vehicle