期刊文献+

超声TOFD图像的亚像素配准算法

Sub-pixel accuracy registration algorithm of ultrasonic TOFD image
下载PDF
导出
摘要 为了提高超声TOFD(Time Of Flight Diffraction)图像的配准精度,研究编写了基于离散傅里叶变换(DFT)的亚像素配准算法,使得原图与模板图的互相关度在0.99附近。为解决实际焊缝缺陷检测过程中处理数据量较大问题,文章通过图像配准来提取有效缺陷区域,减少后期图像处理的数据量和提高缺陷识别效率。现基于FFT的相关性,提出了一种超声TOFD图像配准算法,成功将灰度光学图像处理方法应用于超声波图像,提高配准精度到亚像素层次,得到的配准图像清晰,缺陷特征明显,其操作过程简单,配准位置准确。 To improve the registration accuracy of ultrasonic TOFD (Time of Flight Diffraction) image, this paper presented the sub-pixel registration algorithm based on discrete Fourier transform ( DFT), making the cross-correlation in the vicinity of 0.99 between original and template image. To solve the large amount of data processing problems during actual weld inspection, it extracted effective defect area through image registration, so that reducing the amount of post image processing data and improving efficiency of defect recognition. Based on the correlation of FFT, it proposed a registration algorithm of ultrasonic TOFD image, the success of the optical gray-scale image processing method is applied to the ultrasound image, improved registration accuracy to sub-pixel level, registration images were clear and defect feature was obvious, and the process was simple, the registration location was accurate.
出处 《信息技术》 2015年第5期27-31,共5页 Information Technology
基金 科技部重大项目(2013YQ23057504)
关键词 超声TOFD 图像配准 亚像素 模板匹配 FFT互相关 DFT ultrasonic TOFD image registration sub-pixel template matching FFT cross-correlation DFT
  • 相关文献

参考文献16

  • 1敬忠良,肖刚,李振华著..图像融合:理论与应用[M].北京:高等教育出版社,2007:262.
  • 2陈志刚,尹福昌,孙孚.基于非采样Contourlet变换高分辨率遥感图像配准[J].光学学报,2009,29(10):2744-2750. 被引量:12
  • 3陈钦芳,李英才,马臻,李旭阳,梁士通.离轴二次非球面反射镜无像差点法检测的误差分离技术[J].光学学报,2011,31(2):213-217. 被引量:12
  • 4Dubuission M P,Jain A K. A Modified Hansdorff Distance for Object Matching[ Z ]. Pattern Recognition, 1994 : 566 - 568. 被引量:1
  • 5Kuglin C D, Hines D C. The Phase Correlation Image Alignment Method[ C]. Proc. IEEE Int Conf Cybernetics and Society, 1975 : 163 - 165. 被引量:1
  • 6Barnea D I, Silverraan H F. A class of algorithm for fast digital im- age registration[ J]. IEEE Transactions on Computing, 1972, 21 : 179 - 186. 被引量:1
  • 7董旭.基于序贯相似性检测法的景象匹配算法研究[c].仿真计算机与软件、仿真方法与建模学术交流会论文集,2004:191-196. 被引量:1
  • 8Thevenaz P, Unser M. An efficient mutual information optimizer or muhiresolution image registration[ C]. Proceedings of the IEEE In- ternational Conference on Image Processing, Chicago, IL, 1998, 833 - 837. 被引量:1
  • 9Harris C G, Stephens M J. A combined conner and edge detector [ C] //Proceedings of the 4th Alvey Vision Conference, Manchester, U. K, 1988. 被引量:1
  • 10Smith S M, Brady J M. SUSAN-A new approach to low level image processing[ J]. International Journal of Computer Vision, 1997 ( 1 ) :45 -78. 被引量:1

二级参考文献38

  • 1崔向群,高必烈,汪达兴,朱永田,杨世海,朱政,王磊,夏自立.一种大口径大非球面度天文镜面磨制新技术[J].光学学报,2005,25(3):402-407. 被引量:23
  • 2Fonseca L. M. G. , Manjunath B. S.. Registration techniques for multisensor remotely sensed imagery[J]. Photogrammetric Engineering & Remote Sensing, 1996, 62(9): 1049-1056. 被引量:1
  • 3Irene G. Ki, Emmanouil Z. P. , Kostas Berberidis et al.. An efficient spatial domain technique for subpixel image registration [J]. Signal Processing : Image Communication, 2008, 23 (9) : 711-724. 被引量:1
  • 4Li H., Manjunath B. S., Mitra S. K.. A contour-based approach to multisensor image registration [ J ]. IEEE Transactions on Image Processing, 1995, 4(3): 320-334. 被引量:1
  • 5Ventura A. D. , Rampini A. , Schettini R.. Image registration by recognition of corresponding structures[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3):305-314. 被引量:1
  • 6Shi W. Z. , Shaker A.. The line-based transformation model (LBTM) for image-to-image registration of high-resolution satellite image data [J ]. International Journal of Remote Sensing, 2006, 27(4).. 3001-3012. 被引量:1
  • 7Zavorin I. , Le Moigne J.. Use of multiresolution wavelet feature pyramids for automatic registration of multisensor imagery[J]. IEEE Transactions on Image Processing, 2005, 14 (6): 770-782. 被引量:1
  • 8Fonseca L. M. G., Costa M. H. M.. Automatic registration of satellite images [ C]. Proceedings Brazilian Symposium on Graphic Computation and Image Processing, Campos de Jordao , Brazil, 1997. 219-226. 被引量:1
  • 9Arthur L. Cunha, Jianping Zhou, M. N. Do. The nonsubsampled eontourlet transform: theory, design, and applications [J]. IEEE Tran. Image Processing, 2006, 15(10) : 3089-3101. 被引量:1
  • 10Minh N. Do, Martin Vetterli. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Trans on Image Processing ,2005, 14(12) : 2091-2106. 被引量:1

共引文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部