期刊文献+

一种基于滑动窗口优化算法的行人检测算法 被引量:9

Pedestrian detection in videos based on optimization algorithm using sliding window
下载PDF
导出
摘要 行人检测是计算机视觉中的关键技术之一,在智能交通领域有大量实际应用,如何在提高行人检测精度的同时提高检测速度一直是研究的热点.首先采用基于高斯混合模型的背景建模方法分离出运动目标,将原始视频序列转换为二值图片,得到大量固定大小的训练样本;然后提取样本图片的HOG特征,通过SVM训练得到分类器;接着用固定大小的滑动窗口检测行人,并提出了一种滑动窗口优化算法来筛选检测结果;进而用前景像素密度估算方法调整检测结果,输出最终统计人数,最后实验表明方法的有效性. Pedestrian detection is one of the key technologies in computer vision. It has applied in intelligent transportation field widely. How to improve the detection precision as well as the detection speed is a hot research topic. Background modeling method based on Gauss mixture model is used in this paper to separate the moving target from the background. Then the original video sequence can be converted into binary image for training. Then the HOG feature in the sample images are extracted through the Support Vector Machines. A size-fixed sliding window is used to detect pedestrians. Here an optimization algorithm using sliding window is proposed to screen the test results. Then the foreground pixel density estimation method is used to adjust the detection result. Finally the experimental results show the proposed method is effective.
出处 《浙江工业大学学报》 CAS 北大核心 2015年第2期212-216,共5页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(61104095)
关键词 行人检测 高斯混合模型 HOG 背景建模 pedestrian detection Gaussian mixture model HOG background modeling
  • 相关文献

参考文献18

  • 1汤一平,陆海峰.基于计算机视觉的电梯内防暴力智能视频监控[J].浙江工业大学学报,2009,37(6):591-597. 被引量:12
  • 2陈敏智,汤一平.基于支持向量机的针对ATM机的异常行为识别[J].浙江工业大学学报,2010,38(5):546-551. 被引量:9
  • 3王为,姚明海.基于计算机视觉的智能交通监控系统[J].浙江工业大学学报,2010,38(5):574-579. 被引量:21
  • 4SILBERSTEIN S, LEVI D, KOGAN V, et al. Vision-basedpedestrian detection for rear-view eameras[C]//Intelligent Ve- hicles Symposium Proceedings. Dearborn: IEEE publisher, 2014:853-860. 被引量:1
  • 5PRIOLETTI A, MOGELMOSE A, GRISLIERI P, et al. Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms and evaluation [J]. IEEE Transactions on Intelligent Transportation Sys- tems,2013,14(3) : 1346-1359. 被引量:1
  • 6OLMEDA D, PREMEBIDA C, NUNES U, etal. Pedestrian detection in far infrared images[J]. Integrated Computer-Ai- ded Engineering,2013,20(4) :347-360. 被引量:1
  • 7DOLLAR P, WOJEK C, SCHIELE B, et al. Pedestrian de tection: an evaluation of the state of the art[J]. Pattern Analy- sis and Machine Intelligence, IEEE Transactions on, 2012,34 (4):743-761. 被引量:1
  • 8FELZENSZWAI.B P F, HUTTENLOCHER D P. Efficient matching of pictorial structures[C] //Computer Vision and Pattern Recognition. Hilton Head Island: IEEE publisher, 2000:66 -73. 被引量:1
  • 9BROGGI A, BERTOZZI M, FASCIOLI A, et al. Shape- based pedestrian detection [C]//IEEE Intelligent Vehicles Syrup. Dearborn : IEEE publisher, 2000 : 215-220. 被引量:1
  • 10MOHAN A, PAPAGEORGIOU C, POGGIO T. Example- based object detection in images by components[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, ZOO1,23(4) : 349-361. 被引量:1

二级参考文献64

共引文献80

同被引文献49

  • 1马胜红,赵玉文,王斯成,孔力,李安定,朱瑞兆,胡学浩,张正敏,白建华.光伏发电在我国电力能源结构中的战略地位和未来发展方向[J].太阳能,2005(4):10-16. 被引量:19
  • 2傅志勇.HOG+SVM行人检测算法在DM6437上的实现与优化[D].华南理工大学,2012. 被引量:1
  • 3Dalai N, Triggs B. Histograms of oriented gradients for human detection[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, 1: 886-893. 被引量:1
  • 4Lai M. Context-Aware Image Processing[ D]. Heriot-Watt University, 2014: 25-31. 被引量:1
  • 5Blair C G, Robertson N M. Event-Driven Dynamic Platform Selection for Power-Aware Real-Time Anomaly Detection in Video[ D]. Heriot-Watt Universit, 2014: 11-20. 被引量:1
  • 6Dollar P, Tu Z, Perona P, et al. Integral Channel Fea- tures[ C]//BMVC, 2009 : 44-48. 被引量:1
  • 7Doll.r P, Belongie S, Perona P. The Fastest Pedestrian Detector in the West[ C]//BMVC,2010: 55-61. 被引量:1
  • 8Kaewtrakulpong P, Bowden R. An Improved Adaptive Back- ground Mixture Model for Real-time Tracking with Shadow Detection[ M]. Springer US, 2002. 被引量:1
  • 9Robertson N M, Letham J. Contextual person detection in multi-modal outdoor surveillance[ C]// Signal Processing Conference EUSIPCO, 2012 Proceedings of the 20th Eu- ropean IEEE, 2012: 1930-1934. 被引量:1
  • 10廖东平,魏玺章,黎湘,庄钊文.一种改进的渐进直推式支持向量机分类学习算法[J].信号处理,2008,24(2):213-218. 被引量:11

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部