期刊文献+

内皮祖细胞移植改善高氧暴露新生大鼠肺结构

Transplanted endothelial progenitor cell improves lung structure in neonatal rats exposed to hyperoxia
原文传递
导出
摘要 目的 研究移植内皮祖细胞(endothelial progenitor cell,EPC)对新生大鼠高氧肺损伤的影响及其机制. 方法 从4周龄Sprague-Dawyley大鼠骨髓中培养获取EPC并鉴定.另取新生Sprague-Dawley仔鼠60只,生后室温下适应性饲养24 h后,随机分为空气组、高氧组、移植组和Nω-硝基-L-精氨酸甲酯(Nω-nitro-L-argininemethylester,L-NAME)干预组(简称干预组),每组15只.空气和高氧组分别在空气和85%高氧中饲养28d.移植组在85%高氧中暴露28d,其中在第21天尾静脉注射EPC 1×10 5个.干预组在移植组的基础上,自第21天开始连续腹腔注射L-NAME至第28天,每日剂量为20 mg/kg.第28天处死所有仔鼠,留取血标本,采用流式细胞技术检测CD34+细胞,酶联免疫吸附方法检测血清血管内皮细胞生长因子(vescular endothelial growth factor,VEGF).同时留取肺组织标本,观察辐射状肺泡计数和肺微血管计数、免疫荧光方法观察移植EPC在肺内的定植情况,实时荧光定量聚合酶链反应和蛋白质印迹技术检测肺组织中VEGF、VEGF受体(vescular endothelial growth factor receptor,VEGFR)2和内皮源性一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的表达,并用硝酸还原酶法检测肺组织中一氧化氮的表达.采用单因素方差分析和Bonferroni方法进行统计学分析. 结果 (1)培养所得细胞具有典型的EPC形态改变;结合异硫氢基荧光素标记荆豆凝集素-1并摄取Dil荧光标记的乙酰化低密度脂蛋白的双阳性细胞约占总细胞数的85%;培养所得细胞中CD34+细胞含量为68.2%~72.4%.(2)空气组、高氧组、移植组和干预组仔鼠外周血CD34+细胞数量分别为(1.91±0.34)%、(1.06±0.10)%、(1.47±0.06)%和(0.77±0.11)%(F=32.710,P=0.000),高氧组低于空气组,移植组高于高氧组,干预组又低于移植组(P值均< 0.05).4组仔鼠血清VEGF水平分别为(7.90±2.72)、(6.38±0.72)、(1 Objective To study the effect of transplanted endothelial progenitor cell (EPC) on hyperoxia-induced lung injury in neonatal rats.Methods Rat bone marrow mononuclear cells were cultured in endothelial cell growth medium to obtain EPCs,which were identified by morphology,phagocytosis and CD34+ analyses.Sixty neonatal Sprague-Dawley rats were allowed to acclimate in room air for 24 h after birth,and were then divided into four groups (15 per group),including the air group,the hyperoxia group,the EPCs transplantation group and the N ω-nitro-L-arginine methyl ester (L-NAME) intervention group.Neoborn rats in the Air and Hyperoxia groups were fed in the room air or hyperoxia (85% oxygen) for 28 days.For rats in transplantation group were exposed continuously to hyperoxia for 28 days,and got an EPC (1 × 105 cells) injection on the 21st day.Rats in Intervention group were exposed continuously to hyperoxia for 28 days,got an EPC (1 × 105 cells) injection on the 21st day,and a daily injection of L-NAME from day 21 to day 28,with a daily dose of 20 mg/kg.Levels of circulating CD34+ cells and serum VEGF expression were detected.Specimens from lung tissues were analyzed by immunohistochemistry or immunofluorescence.The expression of vascular endothelial growth factor (VEGF),VEGF receptor 2 (VEGFR2) and eNOS were detected by realtime polymerase chain reaction and Western-blotting.NO production were detected by nitrate reductase assay.One way ANOVA and Bonferroni test were used for statistical analysis.Results (1) The cultured cells had a typical cobblestone appearance; double positive cell binding of fluorescein Ulex Europaeus agglutinin-1 and uptake of Dil-labeled acetylated low density lipoprotein accounted for approximately 85% of the total number of cells.CD34+ cells accounted for 68.2%-72.4% of total cultured cells.(2) Circulating CD34+ cells in the air group,hyperoxia group,EPC transplantation group and L NAME intervention group were (1.91 ± 0.34)%,(1.06 ± 0.10�
出处 《中华围产医学杂志》 CAS CSCD 2015年第5期366-374,共9页 Chinese Journal of Perinatal Medicine
基金 国家自然科学基金(81070517、81270727)
关键词 内皮祖细胞 干细胞移植 支气管肺发育不良 一氧化氮合酶 大鼠 Endothelial progenitor cells Stem cell transplantation Bronchopulmonary dysplasia Vascular endothelial growth factor A Nitric Oxide Synthase Rats
  • 相关文献

参考文献32

  • 1Merritt TA, Deming DD, Boynton BR. The ‘new' bronchopulmonary dysplasia: challenges and commentary[J]. Semin Fetal Neonatal Med, 2009, 14(6):345-357. 被引量:1
  • 2Thebaud B. Angiogenesis in lung development, injury and repair: implications for chronic lung disease of prematurity[J]. Neonatology, 2007, 91 (4):291-297. 被引量:1
  • 3Thebaud B, Abman SH. Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease[J]. Am J Respir Crit Care Med, 2007, 175(10):978-985. 被引量:1
  • 4Baker CD, Ryan SL, Ingrain DA, et al. Endothelial colony- forming ceils from preterm infants are increased and more susceptible to hyperoxia[J]. Am J Respir Crit Care Med, 2009, 180(5):454-461. 被引量:1
  • 5Borghesi A, Massa M, Campanelli R, et al. Circulating endothelial progenitor cells in preterm infants with bronchopulmonary dysplasia[J]. Am J Respir Crit Care Med, 2009, 180(6):540-546. 被引量:1
  • 6Balasubramaniam V, Mervis CF, Maxey AM, et al. Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor ceils in the developing lung: implications for thepathogenesis of bronchopulmonary dysplasia[J]. Am J Physiol Lung Cell Mol Physiol, 2007, 292(5):L1073-1084. 被引量:1
  • 7Burba I, Devanna P, Pesce M. When cells become a drug. Endothelial progenitor cells for cardiovascular therapy: aims and reality[J]. Recent Pat Cardiovasc Drug Discov, 2010, 5(1):1 -10. 被引量:1
  • 8Cobellis G, Botti C, Taddeo A, et al. Successful bone marrow transplantation reveals the lack of endothelial progenitor cells mobilization in a patient with critical limb ischemia: a case report[J]. Transplant Proe, 201 0, 42(7):2816-2820. 被引量:1
  • 9Alev C, Ii M, Asahara T. Endothelial progenitor cells: a novel tool for the therapy of ischemic diseases[J]. Antioxid Redox Signal, 2011, 15(4):949-965. 被引量:1
  • 10Kamata S, Miyagawa S, Fukushima S, et al. Improvement of cardiac stem cell sheet therapy for chronic ischemic injury by adding endothelial progenitor cell transplantation: analysis of layer-specific regional cardiac function[J]. Cell Transplant, 2014, 23(10):1305-1319. 被引量:1

二级参考文献3

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部