期刊文献+

Generations of Integrable Hierarchies and Exact Solutions of Related Evolution Equations with Variable Coefficients

Generations of Integrable Hierarchies and Exact Solutions of Related Evolution Equations with Variable Coefficients
原文传递
导出
摘要 We first propose a way for generating Lie algebras from which we get a few kinds of reduced 6 6 Lie algebras, denoted by R6, R8 and R1,R6/2, respectively. As for applications of some of them, a Lax pair is introduced by using the Lie algebra R6 whose compatibility gives rise to an integrable hierarchy with 4- potential functions and two arbitrary parameters whose corresponding Hamiltonian structure is obtained by the variational identity. Then we make use of the Lie algebra R6 to deduce a nonlinear integrable coupling hierarchy of the mKdV equation whose Hamiltonian structure is also obtained. Again,via using the Lie algebra R62, we introduce a Lax pair and work out a linear integrable coupling hierarchy of the mKdV equation whose Hamiltonian structure is obtained. Finally, we get some reduced linear and nonlinear equations with variable coefficients and work out the elliptic coordinate solutions, exact traveling wave solutions, respectively. We first propose a way for generating Lie algebras from which we get a few kinds of reduced 6 6 Lie algebras, denoted by R6, R8 and R1,R6/2, respectively. As for applications of some of them, a Lax pair is introduced by using the Lie algebra R6 whose compatibility gives rise to an integrable hierarchy with 4- potential functions and two arbitrary parameters whose corresponding Hamiltonian structure is obtained by the variational identity. Then we make use of the Lie algebra R6 to deduce a nonlinear integrable coupling hierarchy of the mKdV equation whose Hamiltonian structure is also obtained. Again,via using the Lie algebra R62, we introduce a Lax pair and work out a linear integrable coupling hierarchy of the mKdV equation whose Hamiltonian structure is obtained. Finally, we get some reduced linear and nonlinear equations with variable coefficients and work out the elliptic coordinate solutions, exact traveling wave solutions, respectively.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第4期1085-1106,共22页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(grant No.11371361) the Natural Science Foundation of Shandong Province(grant No.ZR2013AL016) the Fundamental Research Funds for the Central Universities(2013XK03)
关键词 Lie algebra Hamiltonian structure exact solution Lie algebra, Hamiltonian structure, exact solution
  • 相关文献

参考文献5

二级参考文献54

  • 1W.X. Ma and B. Fuchssteiner, Chaos, Solitons and Frac- tals 7 (1996) 1227. 被引量:1
  • 2W.X. Ma, Methods Appl. Anal. T (2000) 21. 被引量:1
  • 3Y.F. Zhang and H.Q. Zhang, J. Math. Phys. 43 (2002) 466. 被引量:1
  • 4W.X. Ma, X. Xu, and Y.F. Zhang, Phys. Lett. A 351 (2006) 125. 被引量:1
  • 5W.X. Ma, X. Xu, and Y.F. Zhang, J. Math. Phys. 47 (2006) 053501. 被引量:1
  • 6W.X. Ma and M. Chen, J. Phys. A: Math. Gem 39 (2006) 10787. 被引量:1
  • 7W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055. 被引量:1
  • 8W.X. Ma, J. Math. Phys. 46 (2005) 033507. 被引量:1
  • 9Y.F. Zhang and E.G. Fan, Phys. Lett. A 248 (2006) 180. 被引量:1
  • 10E.G. Fan and Y.F. Zhang, Chaos, Solitons and Fra~tals 28 (2006) 966. 被引量:1

共引文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部