期刊文献+

Bifurcations and Chaos in a Nonlinear Discrete Time Cournot Duopoly Game 被引量:1

Bifurcations and Chaos in a Nonlinear Discrete Time Cournot Duopoly Game
原文传递
导出
摘要 A nonlinear discrete time Cournot duopoly game is investigated in this paper. The conditions of existence for saddle-node bifurcation, transcritical bifurcation and flip bifurcation are derived using the center manifold theorem and the bifurcation theory. We prove that there exists chaotic behavior in the sense of Marotto's definition of chaos. The numerical simulations not only show the consistence with our theoretical analysis, but also exhibit the complex but interesting dynamical behaviors of the model. The computation of maximum Lyapunov exponents confirms the theoretical analysis of the dynamical behaviors of the system. A nonlinear discrete time Cournot duopoly game is investigated in this paper. The conditions of existence for saddle-node bifurcation, transcritical bifurcation and flip bifurcation are derived using the center manifold theorem and the bifurcation theory. We prove that there exists chaotic behavior in the sense of Marotto's definition of chaos. The numerical simulations not only show the consistence with our theoretical analysis, but also exhibit the complex but interesting dynamical behaviors of the model. The computation of maximum Lyapunov exponents confirms the theoretical analysis of the dynamical behaviors of the system.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第4期951-964,共14页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(Nos.11101021,11372017) the National Scholarship Fund of China(201303070219)
关键词 discrete Cournot duopoly game BIFURCATION Marotto chaos discrete Cournot duopoly game bifurcation Marotto chaos
  • 相关文献

参考文献15

  • 1Bischi, G.l" Kopel, M. Equilibrium selection in a nonlinear duopoly game with adaptive expectations. J. of Economic Behavior & Org., 46: 73-100 (2001). 被引量:1
  • 2Guckenheimer, J., Holmes, P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. Springer-Verlag, New York, 1997. 被引量:1
  • 3Hirsch, M., Smale, S. Differential equations, dynamical systems, and linear algebra. Academic Press, New York,1974. 被引量:1
  • 4Huang, Y., Chen, G., Ma, D.W. Rapid fluctuations of chaotic maps on RN. J. Math. Anal. Appl., 323(1): 228-252 (2006). 被引量:1
  • 5Jiang, G.R., Lu, Q.S. The dynamics of a prey-predator model with impulsive state feedback control. Discrete and Continuous Dynamical Systems-Series B, 6(6): 1301-1320 (2006). 被引量:1
  • 6Jing, Z.J., Chang, Y., Guo, B.L. Bifurcation and chaos in discrete FitzHugh-Nagumo system. Chaos Solit. Fract., 21: 701-720 (2004). 被引量:1
  • 7Li, T.Y., Yorke, J.A. Period three implies chaos. Amer. Math. Monthly, 82: 985-992 (1975). 被引量:1
  • 8Lin, W., Ruan, J., Zhao, W. On the mathematical clarification of the snap-back repeller in high-dimensional systems and chaos in a discrete neural network model. Int. J. Bifurcation and Chaos, 12(5): 1129-1139 (2002). 被引量:1
  • 9Marotto, F.R. Snap-back repellers imply chaos in H": J. Math. Anal. Appl., 63: 199-223 (1978). 被引量:1
  • 10Marotto, F.R. On redefining a snap-back repeller. Chaos Solit. Fract., 25: 25-28 (2005). 被引量:1

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部