期刊文献+

基于Gabor特征的稀疏表示纹理分割研究

Gabor feature based sparse representation for texture segmentation
下载PDF
导出
摘要 稀疏表示和字典学习在图像去噪、图像重建和模式识别等应用上取得了良好的效果,其利用稀疏系数和重构误差来作为模式分类的判别准则。稀疏表示纹理分割方法是将图像分割问题转换为像素点的分类问题。但通常稀疏表示分类方法是基于图像块特征,难以准确表征图像纹理信息。为了解决上述问题,提出基于Gabor特征的稀疏表示纹理分割方法。因为Gabor特征对图像纹理信息的鲁棒性,算法首先从每类纹理中选择一些像素点作为训练样本,计算其不同尺度和方向下的Gabor特征,将其作为初始化字典,通过判别性的字典学习算法(D-KSVD)更新字典,该字典学习算法在KSVD基础上使得字典更具有类别判别能力,最后以待分割图像的每个像素点作为测试样本,计算其Gabor特征。利用OMP算法得到测试样本在字典下的稀疏系数,根据稀疏系数得到类标签,进而对像素点进行分类,完成分割。通过在Brodatz纹理库上的实验结果表明,该方法有效提高了稀疏表示算法对纹理图像分割的正确率。 The method of sparse representation for texture segmentation is to convert the image segmentation into the pixel classification. Generally,the method of sparse representation classification is based on image block feature,which is difficult to accurately character the image’s texture information. To solve the above-mentioned problems,Gabor feature based sparse repre-sentation for texture segmentation is proposed in this paper,because Gabor feature is robustness to image texture. Firstly,some pixels are randomly select from each texture as training samples to calculate their Gabor features with different scales and orien-tations,and take these Gabor features as initialization dictionary. The dictionary is updated by discriminative dictionary learning (D-KSVD)algorithm. Based on KSVD,the algorithm makes the dictionary more discriminative. Finally,each pixel of the under segment image is taken as the test samples to calculate their Gabor features. The OMP algorithm is utilized to calculate the sparse coefficients to obtain the final class labels. The result of experiment on the Brodatz texture database shows that the pro-posed method can effectively improve the texture segmentation accuracy of sparse representation algorithm.
出处 《现代电子技术》 北大核心 2015年第10期73-77,共5页 Modern Electronics Technique
基金 国家自然科学基金(61273251)
关键词 稀疏表示 字典学习 D-KSVD GABOR sparse representation dictionary learning D-KSVD Gabor
  • 相关文献

参考文献13

  • 1OLSHAUSEN B A, FIELD D J. Emergence of simple-cell re- ceptive field properties by learning aspase code for natural images [J]. Nature, 1996, 381: 607-609. 被引量:1
  • 2WRIGHT J, YANG A Y, GANESH A, et al, Robust face recognition via sparse representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210- 227. 被引量:1
  • 3RAMIREZ I, Sprechmann P, SAPIRO G. Classification and clustering via dictionary learning with structured incoherence and shared features [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010: 3501-3508. 被引量:1
  • 4MAIRAL J, BACH F, PONCE J, at al. Discriminative learned dictionaries for local image analysis [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. An- chorage, Alaska, USA: IEEE, 2008: 1-8. 被引量:1
  • 5YANG M, ZHANG L, FENG X C. Fisher discrimination dic- tionary learning for sparse representation [C]// Proceedings of IEEE International Conference on Computer Vision. Barcelo- na, Spain: ICCV, 2011: 6-13. 被引量:1
  • 6ZHANG Qiang, LI Bao-xin. Discriminative K-SVD for dictionary learning in face recognition [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, CA, USA: IEEE, 2010: 2691-2698. 被引量:1
  • 7IRINA F G, BHASKAR D R. Sparse signal reconstruction from limited data using focus: a re-weighted minimum norm al- gorithm [J]. IEEE Transactions on Signal Processing, 1997, 45 (3) : 600-616. 被引量:1
  • 8ENGAN K, AASE S O, HUSOY J H. Multi-frame compres- sion: theory and design [J]. EURASIP Signal Processing, 2000, 80(10) : 2121-2140. 被引量:1
  • 9AHARON M, ELAD M, BRUCKSTEIN A. KSVD: An algo- rithm for designing overcomplete dictionaries for sparse repre- sentation [J]. IEEE Transactions on Signal Processing, 2006, 54( 11 ) : 4311-4322. 被引量:1
  • 10MAIRAL J, BACH F, PONCE J, at al. Online dictionary learning for sparse coding [C]// Proceedings of the 26th Inter- national Conference on Machine Learning. Montreal, QC, Canada: ICML, 2009: 689-696. 被引量:1

二级参考文献38

  • 1张勇,唐超群,戴君.锐钛矿TiO_2及其掺Fe所导致的红移现象研究:赝势计算和紫外光谱实验[J].物理学报,2005,54(1):323-327. 被引量:52
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3WRIGHT J, MA Y, MAIRAL J, et al. Sparse representation forcomputer vision and pattern recognition [J]. Proceedings of theIEEE, 2010, 98(6): 1031-1044. 被引量:1
  • 4AHARON Michal, ELAD Michael, BRUCKSTEIN Alfred. K-SVD: An algorithm for designing overcomplete dictionaries forsparse representation [J]. IEEE Transactions on Signal Process-ing, 2006,54(11): 4311-4322. 被引量:1
  • 5AHARON M, ELAD M, BRUCKSTEIN A M. On the uniquenessof overcomplete dictionaries, and a practical way to retrievethem [J]. Linear algebra and its applications, 2006,416(1): 48-67. 被引量:1
  • 6HUBEL D H,WIESEL T N. Receptive fields of single neu-rones in the cat's striate cortex [J]. The Journal of physiology,1959, 148(3): 574-591. 被引量:1
  • 7MALLAT S G,ZHANG Z. Matching pursuits with time-frequen-cy dictionaries [J]. IEEE Transactions on Signal Processing,1993, 41(12): 3397-3415. 被引量:1
  • 8XU Z, SUN J. Image inpainting by patch propagation usingpatch sparsity [J]. IEEE Transactions on Image Processing,2010, 19(5): 1153-1165. 被引量:1
  • 9ELAD M, AHARON M. Image denoising via sparse and redun-dant representations over learned dictionaries [J]. IEEE Trans-actions on Image Processing, 2006, 15(12): 3736-3745. 被引量:1
  • 10ZHANG Hai-chao, ZHANG Yan-ning, HUANG THOMAS S.Efficient sparse representation based image super resolution viadual dictionary learning [C]// IEEE International Conference onMultimedia and Expo. Barcelona, Spain: IEEE, 2011: 1-6. 被引量:1

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部