期刊文献+

线-铝箔电极电晕放电激励器的推力理论与实验研究 被引量:6

Theoretical and experimental study of thrust produced by corona discharge exciter in wire-aluminum foil electrode configration
原文传递
导出
摘要 空气电晕放电离子风激励器无需旋转部件,仅通过消耗电能就能直接产生驱动力,它是一种新型的动力技术,备受国内外航空航天界的广泛关注.目前对空气电晕放电离子风激励器的推力产生机理虽有各种解释,但是现有理论均不能统一各种条件下的实验结果,仍需要开展进一步的分析与研究.本文以线-铝箔电极电晕放电激励器为研究对象,通过实验研究发现作用在线电极与铝箔电极上的静电力不对称,而且改变铝箔电极纵向高度和气压均能影响激励器的推力大小;通过理论分析,考虑电晕层与空间电荷的影响,建立了线-铝箔电极电晕放电激励器的推力计算模型,其计算值与实测值比较一致.基于上述实验现象与理论建模分析,本文认为线-铝箔电极电晕放电激励器的推力主要来源于线电极电晕产生的空间电荷对电极系统产生了不对称静电力作用,使激励器出现净静电力作用. Air corona discharge ionic wind exciter can generate driving force without any rotating component, which makes it commonly used in aviation and aerospace field. Although there are many explanations of the thrust generating mechanism of the air corona discharge ionic wind exciter, no existing theories can unify the experiment results obtained under various conditions. A further study is still needed. The paper focuses on the characteristics of wire-aluminum foil exciter. The experiments show that the electrostatic force acting on the wire-aluminum foil is asymmetric and the variations of the height in lengthways aluminum foil and the air pressure can change the electrostatic force. Meanwhile, with the theoretical analysis the calculation model of the force of the wire-aluminum foil exciter's corona discharge is established by taking the influences of corona layer and space charge into consideration. The calculation fits the measured value. By combining with the theoretical analysis, the thrust of wire-aluminum foil electrode corona discharge exciter is proved to come from the space charge produced by wire electrode corona discharge, which exerts an asymmetric electrostatic force on the electrode system and generates a net electrostatic force for the exciter.
机构地区 西安交通大学
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第10期147-153,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51377132)资助的课题~~
关键词 线-铝箔电极 静电力 离子风 电晕放电 wire-aluminum foil electrode, electrostatic force, ionic wind, corona discharge
  • 相关文献

参考文献28

二级参考文献22

  • 1Tendero C, Tixier C, Tristant P, Desmaison J, Leprince P 2006 Spectrochimica Acta Part B Atomic Spectroscopy 61 2. 被引量:1
  • 2Roth J R, Rahel J, Dai X 2005 J. Phys. D: Appl. Phys. 38 555. 被引量:1
  • 3Fang Z, Qiu Y, Luo Y 2003 J. Phys. D: Appl. Phys. 36 2980. 被引量:1
  • 4Eden J G 2006 Proc. IEEE 94 567. 被引量:1
  • 5Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400. 被引量:1
  • 6Kanazawa S, Kogoma M, Moriwaki T, Okazaki S 1988 J. Phys. D: Appl. Phys. 21 838. 被引量:1
  • 7Kogoma M, Okazaki S 1994 J. Phys.D:Appl. Phys. 27 1985. 被引量:1
  • 8Luo H Y, Liang Z, Lv B, Wang X X, Guan Z C, Wang L M 2007 Appl. Phys. Lett. 91 231504. 被引量:1
  • 9Massines E Rabehi A, Decomps P, Gadri R B, S6gur P, Mayoux C 1998 J. Appl. Phys. 83 2950. 被引量:1
  • 10Trunec D, Brablec A, Buchta J 2001 J. Phys. D: Appl. Phys. 34 1697. 被引量:1

共引文献12

同被引文献83

引证文献6

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部