期刊文献+

如何运用大数据技术优化石油上游产业 被引量:7

HOW TO USE BIG DATA TECHNOLOGY TO OPTIMIZE PETROLEUM UPSTREAM INDUSTRY
下载PDF
导出
摘要 大数据作为石油新经济的理论是最近几年提出的,石油上游产业从勘探到开发产生大量的原始数据,如何收集、解释和利用这些数据给石油工业带来了挑战。为了使各种复杂和日益剧增的原始数据变得更有价值,必须对其进行分解、分析和提取才能为勘探与开发提供有效的信息服务。石油上游产业在地面和井下使用数以千计的传感器采集大量的原始数据,用于二维、三维地震建模、油藏模拟、实时监测、地质导向和油气开采。石油上游产业的数据量已经超出人们的想象,大数据技术能将其中的公共数据与不同领域或专业的数据融为一体,提取并发布正确的信息,这种能力可以帮助企业依据提取的数据和发布的正确信息为决策者提供及时和正确的决策。本文重点讲述如何运用大数据技术优化石油上游产业,大数据技术如何为企业的专家和决策者提供正确的决策。 Big data as a new economic theory of petroleum is introduced in recent years.Large amounts of raw data are produced from the exploration to the upstream petroleum industry development.How to collect,interpret,and use these data has brought great challenges to the oil industry.In order to make all kinds of complex and growing raw data become more valuable,they must be decomposed,analyzed and extracted to provide effective information service for exploration and development.Petroleum upstream industry use thousands of sensors on the surface and underground to collect a lot of raw data which are used in 2D,3D seismic modeling,reservoir simulation,real-time monitoring,geosteering,and oil and gas production.The amount of data from petroleum upstream industry is beyond people's imagination.Big data technology can integrate the common data with different areas or professional data,and extract and deliver the right information,which can help provide timely and correct decision for the decision makers.This paper focuses on how to use big data technology to optimize petroleum upstream industries,and how big data technology helps the enterprise experts to make the right decisions.
出处 《石油工业计算机应用》 2015年第1期8-12,3,共5页 Computer Applications Of Petroleum
关键词 大数据 石油上游产业 勘探与开发 数据分析 优化与决策 产业创新 big data petroleum upstream industry exploration and development data analysis optimi-zation and decision industry innovation
  • 相关文献

参考文献10

  • 1Feblowitz J. , 2012, The Big stream Oil and Gas, Paper sights, October 2012. 被引量:1
  • 2Deal About Big Data in Up presentation, IDC Energy In Brul6 M. , 2013, Tapping the power of Big Data for the oil and gas industry, IBM Software White Paper for Petroleum Industry, May 2013. 被引量:1
  • 3Hems A., Soofi A., Perez E., 2013, Drilling for New Business Value: How innovative oil and gas companies are using Big Data to outmaneuver the competition, A Mi- crosoft White Paper, May 2013. 被引量:1
  • 4Seshadri M., 2013, Big Data Science Challenging The Oil Industry, CTO Global Services, EMC Corporation, March 2013. 被引量:1
  • 5Nicholson R., 2012, Big Data in the Oil Gas Industry, IDC Energy Insights, September 2012. 被引量:1
  • 6Hollingsworth J., 2013, Big Data For Oil Gas, Oracle Oil Gas Industry Business Unit, March 2013. 被引量:1
  • 7Baaziz A. , Quoniam L. , 2013, The information for the op- erational risk management in uncertain environments: Case of Early Kick Detection while drilling of the oil or gas wells, International Journal of Innovation and Applied Stud- ies (IJIAS), Vol. 4 No. 1, Sep. 2013. 被引量:1
  • 8Apache Hadoop, Website, Available at http//zh, wikipe- dia. org/zh--cn/Apaehe_Hadoop, last update: April 2014. 被引量:1
  • 9Tapping the power of big data for the oil and gas industry, IBM Software White Paper, April 2013. 被引量:1
  • 10Cloud Computing - Next generation tools for Oil and Gas Companies? 9th Biennial International Conference Exposi- tion on Petroleum Geophysics, Hyderanad 2012. 被引量:1

同被引文献85

  • 1张建.大数据点金大油气[J].中国石油企业,2014(4):69-71. 被引量:5
  • 2童晓光.世界石油供需状况展望——全球油气资源丰富,仍具有较强的油气供给能力[J].世界石油工业,2007,14(3):20-25. 被引量:10
  • 3朱月霞,侯建光.基于大数据的地质数据存储与管理研究[C]//江苏省测绘地理信息学会2014年学术年会论文集,2014. 被引量:2
  • 4每日经济新闻.我国2014年进口石油3亿吨,对外依存度逼近六成[EB/OL].http://finance.eastmoney.com/news/1345,20150114467384774.htm. 被引量:1
  • 5第一财经.我国2014年天然气对外依存度32.2%,[EB/0L].2015.http://www.yicai.com/news/2015/01/4065535.html. 被引量:1
  • 6余永红,刘鸿儒,徐洁磐.基于OMNIX面向对象数据库管理系统的石油数据银行的研究[C/OL].第十七届全国数据库学术会议.保定:5. 被引量:1
  • 7辛胜德.石油数据银行产生及其发展[N].中国石油报,2002-6-3(2). 被引量:1
  • 8Perrons, R.K.,J.W. Jensen. Data as an asset:what the oil and gas sector can learn from other industries about "Big Data"[J].Energy Policy, 2015.81:p. 117-121. 被引量:1
  • 9K Holdaway. Harness oil and analytics:optimize exploration gas big data with and production with data driven models[M].2014: John Wiley & Sons. 被引量:1
  • 10Big data solutions & analytics in upstream oil and gas industry[C].2015. Oslo, Norway. 被引量:1

引证文献7

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部