期刊文献+

基于混合粒子滤波的高速公路交通参数自适应估计方法 被引量:3

A Method of Exporessway Traffic Parameter Self-adaptive Estimation Based on Hybrid Particle Filtering
原文传递
导出
摘要 为提高高速公路交通参数的估计准确度,在宏观交通流模型和状态空间模型的基础上,基于贝叶斯理论,提出了一种基于混合粒子滤波的交通参数估计方法。考虑到估计结果对模型参数变化的敏感性,避免采用预设固定模型参数对估计准确度的影响,通过建立自由流速度与饱和度之间的变化关系,提出了交通状态影响下的模型参数自适应调整策略。仿真结果表明:基于混合粒子滤波的交通参数估计准确度要明显高于卡尔曼滤波估计,在正常和事故场景下,能够快速识别交通量和速度较明显的波动,表现出了更强的稳定性;交通状态影响下的模型参数自适应调整策略会明显提高交通参数估计准确度,在发生事故情况下,也可达到较好的估计效果。 In order to improve the accuracy of exporessway traffic parameter estimation, a traffic parameter estimation method based on HPF is proposed based on macroscopic traffic flow model and state-space model according to Bayesian theory. Considering the sensitivity of the estimation result to the model parameters and avoiding the effect of using preset fixed model parameters on the estimation accuracy, a self-adaptive adjustment strategy for model parameters under the influence of traffic state is proposed through establishing the relationship between free-flow speed and saturation. The simulation result shows that (1) the traffic parameter estimation accuracy based on HPF is obviously higher than that of Ka^man filtering, it is able to quickly identify the obvious fluctuations of traffic volume and speed under normal and accident traffic conditions, which reflects a higher stability; (2) the self-adaptive adjustment strategy of model parameter under the influence of traffic conditions can obviously improve the estimation accuracy and achieve better estimation effect even in case of accident.
出处 《公路交通科技》 CAS CSCD 北大核心 2015年第5期141-146,共6页 Journal of Highway and Transportation Research and Development
基金 国家自然科学基金项目(51208051) 河南省2014交通厅科技攻关项目(2014G27) 河南省高等学校重点科研项目(15A580004)
关键词 交通工程 高速公路 交通流 交通参数估计 混合粒子滤波 自适应调整 traffic engineering exporessway filtering (HPF) self-adaptive adjustment traffic flow traffic parameter estimation hybrid particle
  • 相关文献

参考文献12

  • 1HERRERA J C, BAYEN A M. Incorporation of Lagrangian Measurements in Freeway Traffic State Estimation [ J ]. Transportation Research Part B: Methodological, 2010, 44 (4):460-481. 被引量:1
  • 2VAN LINT J W C, HOOGENDOORN S P. A Robust and Efficient Method for Fusing Heterogeneous Data from Traffic Sensors on Freeways [ J ]. Computer-Aided Civil and Infrastructure Engineering, 2010, 25 ( 8 ):596 - 612. 被引量:1
  • 3WANG Y, PAPAGEORGIOU M, MESSMER A, et al. An Adaptive Freeway Traffic State Estimator [ J ]. Automatica, 2009, 45 (1): 10-24. 被引量:1
  • 4WANG Y, PAPAGEORGIOU M, MESSMER A. RENAISSANCE: A Unified Macroscopic Model-based Approach to Real-time Freeway Network Traffic Surveillance [ J ]. Transportation Research Part C: Emerging Technologies, 2006, 14 (3) : 190-212. 被引量:1
  • 5WANG Y, PAPAGEORGIOU M, MESSMER A. Real- time Freeway Traffic State Estimation Based on Extended Kalman Filter: A Case Sudy [ J ]. Transportation Science, 2007, 41 (2): 167-181. 被引量:1
  • 6董春娇,邵春福,周雪梅,孟梦,诸葛承祥.基于交通流参数相关的阻塞流短时预测卡尔曼滤波算法[J].东南大学学报(自然科学版),2014,44(2):413-419. 被引量:16
  • 7ROMANENKO A, CASTRO J A A M. The Unscented Filter as an Alternative to the EKF for Nonlinear State Estimation: A Simulation Case Study [ J ]. Computers & Chemical Engineering, 2004, 28 (3) : 347 - 355. 被引量:1
  • 8YE Z, ZHANG Y, M1DDLETON D R. Unscented Kalman Filter Method for Speed Estimation Using Single Loop Detector Data [ J]. Transportation Research Record, 2006, 1968 (1): 117-125. 被引量:1
  • 9程松,陈光梦.一种利用UKF的高速公路实时交通状态估计方法[J].计算机工程与应用,2008,44(8):226-229. 被引量:1
  • 10MIHAYLOVA L, BOEL R, HEGYI A. Freeway Traffic Estimation within Particle Filtering Framework [ J ]. Automatica, 2007, 43 (2) : 290 - 300. 被引量:1

二级参考文献23

  • 1唐铁桥,黄海军.用燕尾突变理论来讨论交通流预测[J].数学研究,2005,38(1):112-116. 被引量:16
  • 2姚智胜,邵春福,熊志华.基于小波包和最小二乘支持向量机的短时交通流组合预测方法研究[J].中国管理科学,2007,15(1):64-68. 被引量:24
  • 3Helbing D.Traffic and related self-driven many-particle systems[J]. Reviews of Modern Physics,2002,73 : 1067-1141. 被引量:1
  • 4Papageorgiou M,Blosseville J M,Haj-Salem H.Modeling and realtime control of traffic flow on the southern part of Boulevard Peripherique in Paris-Part I:modeling[J].Transportation Research A, 1990,24: 345-359. 被引量:1
  • 5Kotsialos A,Papageorgiou M,Diakaki C,et al.Traffic flow modeling of large-scale motorway using the macroscopic modeling tool METANET[J].IEEE Transactions on Intelligent Transportation Systems, 2002,3 ( 4 ) : 282-292. 被引量:1
  • 6Cremer M.Flow variables :estimation[M]//Concise encyclopedia of traffic and transportation systems.[S.l.]:Pergamon Press,1991. 被引量:1
  • 7Kohan R R, Bortoff S A.An observer for highway traffic systems[C]// Proceedings of the 37th IEEE Conference on Decision & Control, Tampa, Florida USA, 1998 : 1012-1017. 被引量:1
  • 8Meier J,Wehlan H.Section-wise modeling of traffic flow and its application in traffic state estimation[C]//Proceedings of the 2001'IEEE Conference on ITS,Oakland,Canada,2001:442-447. 被引量:1
  • 9Wang Y,Papageorgiou M.Real-time freeway traffic state estimation based on extended Kalman filter:a general approach[J].Transportation Research B,2005,39(2):141-167. 被引量:1
  • 10Wang Y,Papageorgiou M.A real-time freeway network traffic surveillance tool[J].IEEE Transactions on Control Systems Technology, 2006,14( 1 ): 18-32. 被引量:1

共引文献15

同被引文献23

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部