期刊文献+

半线性分段连续型随机微分方程数值解的收敛性和稳定性

Convergence and stability of numerical solutions for semi-linear stochastic differential equations with piecewise continuous arguments
下载PDF
导出
摘要 将Back-Euler方法应用到半线性分段连续型随机微分方程上,研究对给定步长该方程数值解的收敛性和对任意步长数值解的均方稳定性,在处理半线性项的矩阵时,证明的方法主要应用了矩阵范数,从而达到要研究半线性分段连续型随机微分方程数值解的收敛性和稳定性的目的。 Applying the Back-Euler method to semi-linear stochastic differential equations with piecewise continuous arguments, the convergence of numerical solutions of the equation for given step size and sta- bility in mean square of numerical solutions for any step size is studied. Definition of matrix norm is ap- plied to handle with the semi-linear matrix term. Thereby, convergence and stability of semi-linear sto- chastic differential equations with piecewise continuous arguments are studied.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2015年第2期201-207,共7页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省教育厅科学技术研究项目(12523001)
关键词 分段连续型随机微分方程 Back-Euler方法 收敛性 稳定性 数值解 semi-linear stochastic differential equations with piecewise continuous arguments Back-Euler method convergence stability numerical solutions
  • 相关文献

参考文献15

  • 1FRIEDMAN A. Stochastic differential equations and applications[ M ]. New York: Academic Press, 1975. 被引量:1
  • 2HIGHAM D J. An algorithmic introduction to numerical simulation of stochastic differential equations[ J ]. SIAM Review, 2001, 43 (3) : 525 - 546. 被引量:1
  • 3HIGHAM D J, MAO X R, YUAN C G. Almost sure and moment exponential stability in the numerical simulation of stochastic differential equa- tions [ J ]. SIAM Journal on Numerical Analysis, 2007, 45 (2) : 592 - 609. 被引量:1
  • 4MAO X R. Stochatic differential equations and applications [ M]. Chiehester: Horwood Publishing, 2007. 被引量:1
  • 5MAO X R, YUAN C G. Stoehastic differential equations with Markovian switching[ M]. London: Imperial College Press, 2006. 被引量:1
  • 6CAO W R, LIU M Z, FAN Z C. MS-stability of the Euler-Maruyama method for stochastic differential delay equations[J]. Applied Mathematics and Computation, 2004, 159(1 ) : 127 - 135. 被引量:1
  • 7范振成,刘明珠.随机延迟微分方程数值解的P阶矩指数稳定[J].黑龙江大学自然科学学报,2005,22(4):468-470. 被引量:3
  • 8MAO X R. Numerical solutions of stochastic differential delay equations under the generalized Khasminskii -type conditions[J]. Applied Mathe- matics and Computation, 2011, 217(12) : 5512 -5524. 被引量:1
  • 9MAO X R. Numerical solutions of stochastic functional differential equations[ J]. LMS Journal of Computation and Mathematics, 2003,6:141 - 161. 被引量:1
  • 10MAO X R, SABANIS S. Numerical solutions of stochastic differential delay equations under local Lipschitz condition [ J ]. Journal of Computation- al and Applied Mathematics, 2003, 151 ( 1 ) : 215 -227. 被引量:1

二级参考文献20

  • 1MAO Xue-rong, SABANIS S. Numerical solutions of SDDEs under local Lipschitz condition[J]. Journal of Computational and Applied Mathematics, 2003,151:215 -227. 被引量:1
  • 2MAO Xue-rong. Numerical solutions of SFDEs under local Lipschitz condition [ J ]. LMS Journal Computational Mathematics, 2003,6:141 - 161. 被引量:1
  • 3YUAN Cheng-gui, MAO Xue-rong. Convergence of the Euler-Maruyama method for stochastic differential equation with Markovian switching[ J ]. Mathematics and Computer in Simulation, 2004,64:223 - 235. 被引量:1
  • 4LI Rong-hua, HOU Ying-min. Convergence and stability of numerical solutions to SDDEs with Markovian switching[ J]. Applied Mathematics and Computation, 2006,175 : 1080 - 1091. 被引量:1
  • 5MAO Xue-rong, YUAN Cheng-gui. Approximations of the Euler-Maruyama type for SDEwMSs under non-Lipschitz condition[ J]. Journal of Computational and Applied Mathematics, 2003,151:215 - 227. 被引量:1
  • 6LI Rong-hua, MENG Hong-bing, DAI Rong-hong. Convergence of numerical solutiong to SDDEs with poisson jumps[ J ]. Journal of Computational and Applied Mathematics, 2003,172 : 584 - 602. 被引量:1
  • 7LI Rong-hua, CHANG Zhao-guang. Convergence of numerical solutiong to SDDEs with poisson jumps and Markovian switching [ J ]. Journal of Computational and Applied Mathematics, 2007,184 : 451 -463. 被引量:1
  • 8BUCHWAR E. Introduction of the numerical analysis of SDDEs[ J ]. Journal of Computational and Applied Mathematics, 2000,125:297 -307. 被引量:1
  • 9LAMBA H, SEAMAN T. Mean-square stability properties of an adaptive time-steping SDE solver[ J ]. Journal of Computational and Applied Mathematics, 2006,194 : 245 - 254. 被引量:1
  • 10CARLETH M. Numerical of stochastic differential problems in the biosciences [ J ]. Journal of Computational and Applied Mathematics, 2000, 185 : 422 -440. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部